python cvrp问题代码
时间: 2023-09-13 15:00:20 浏览: 188
基于遗传算法的CVRP建模求解-python代码 人工智能 - 深度学习.zip
5星 · 资源好评率100%
Python cvrp问题代码是用Python编写的,用于解决车辆路径问题(CVRP)的问题。车辆路径问题是指需要确定一组车辆在给定需求点集合中的路径,以满足一定的限制条件,例如每个路径的总长度不超过某个值,每个路径的需求总和不超过某个值等。
以下是一个简单的Python cvrp问题代码示例:
```python
import numpy as np
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
# 创建数据模型
def create_data_model():
data = {}
# 车辆数
data['num_vehicles'] = 2
# 需求点集合
data['demands'] = [0, 1, 1, 2, 1, 2, 1]
# 距离矩阵
data['distances'] = [
[0, 1, 1, 2, 1, 2, 1],
[1, 0, 2, 1, 2, 1, 1],
[1, 2, 0, 1, 2, 1, 2],
[2, 1, 1, 0, 1, 2, 2],
[1, 2, 2, 1, 0, 1, 2],
[2, 1, 1, 2, 1, 0, 1],
[1, 1, 2, 2, 2, 1, 0]]
return data
# 解决CVRP问题
def solve_cvrp():
data = create_data_model()
manager = pywrapcp.RoutingIndexManager(len(data['distances']),
data['num_vehicles'], [0], [0])
routing = pywrapcp.RoutingModel(manager)
def distance_callback(from_index, to_index):
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data['distances'][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
add_capacity_constraints(data, manager, routing, transit_callback_index)
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
search_parameters.time_limit.seconds = 30
solution = routing.SolveWithParameters(search_parameters)
if solution:
print_solution(data, manager, routing, solution)
# 添加容量约束
def add_capacity_constraints(data, manager, routing, transit_callback_index):
capacity = 'Capacity'
routing.AddDimension(
transit_callback_index,
0, # no slack
3, # vehicle maximum capacity
# 车辆初始容量
capacity)
capacity_dimension = routing.GetDimensionOrDie(capacity)
for vehicle_id in range(data['num_vehicles']):
index = manager.NodeToIndex(vehicle_id)
capacity_dimension.SetCumulVarSoftUpperBound(index, 3, 0)
# 打印路径和总距离
def print_solution(data, manager, routing, solution):
total_distance = 0
for vehicle_id in range(data['num_vehicles']):
index = routing.Start(vehicle_id)
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
route_distance = 0
while not routing.IsEnd(index):
node_index = manager.IndexToNode(index)
plan_output += ' {} ->'.format(node_index)
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(previous_index, index, vehicle_id)
plan_output += ' {}\n'.format(manager.IndexToNode(index))
plan_output += 'Distance of the route: {}\n'.format(route_distance)
print(plan_output)
total_distance += route_distance
print('Total distance of all routes: {}'.format(total_distance))
solve_cvrp()
```
以上代码使用Google OR-Tools库解决CVRP问题。它创建了一个数据模型,包括车辆数、需求点集合和距离矩阵。然后,它使用约束求解器和路由模型来解决问题,并添加了容量约束。最后,它输出每个车辆的路径和总距离。
请注意,这只是一个简单的示例,实际上解决CVRP问题可能需要更复杂和精细的模型和算法。
阅读全文