用tensorflow 2.0以上版本,搭建深度置信网络。实验用数据库为MNIST
时间: 2024-10-26 09:16:34 浏览: 34
深度置信网络(Deep Belief Network, DBN)是一种由多个受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)堆叠而成的深度学习模型,用于无监督预训练,之后再进行微调以完成特定任务。在TensorFlow 2.x及以上版本构建DBN并应用于MNIST手写数字识别的步骤大致如下:
1. **导入必要的库**:
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical
```
2. **加载和预处理MNIST数据**:
```python
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train / 255.0 # 归一化像素值到0-1之间
x_test = x_test / 255.0
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
```
3. **初始化RBM层**:
DBN通常包括多层RBMs,首先创建一个RBM模型作为基础:
```python
def create_rbm(num_units):
return Sequential([
Dense(units=num_units, activation='sigmoid', input_shape=(784,), name="rbm_hidden"),
Dropout(keep_prob=0.5),
])
```
4. **预训练DBN**:
使用`tf.GradientTape`实现无监督学习,通过逐层添加并训练RBMs:
```python
rbms = [create_rbm(512) for _ in range(num_layers)] # 定义层数
for i, layer in enumerate(rbms[:-1]):
current_input = x_train if i == 0 else layer.output
next_input = rbms[i + 1](current_input)
... # 进行反向传播和更新权重
```
5. **堆叠和微调**:
将预训练好的RBMs连接成一个多层网络,并用分类层完成微调:
```python
dbn = Sequential([*rbms, Dense(10, activation='softmax')])
dbn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
dbn.fit(x_train, y_train, epochs=num_epochs, validation_data=(x_test, y_test))
```
阅读全文