卡尔曼滤波演示球追踪
时间: 2023-11-29 09:44:58 浏览: 73
以下是卡尔曼滤波演示球追踪的Python代码:
```python
import numpy as np
import cv2
# 定义视频文件路径
video_path = 'ball_tracking_example.mp4'
# 打开视频文件
cap = cv2.VideoCapture(video_path)
# 定义测量矩阵H
H = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], dtype=np.float32)
# 定义状态转移矩阵F
F = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float32)
# 定义过程噪声协方差矩阵Q
Q = np.eye(4, dtype=np.float32) * 0.1
# 定义测量噪声协方差矩阵R
R = np.eye(2, dtype=np.float32) * 0.01
# 定义初始状态估计值x
x = np.array([[0], [0], [0], [0]], dtype=np.float32)
# 定义初始状态协方差矩阵P
P = np.eye(4, dtype=np.float32)
# 定义观测值
measurements = []
# 定义预测值
predictions = []
# 定义估计值
estimations = []
while True:
# 读取视频帧
ret, frame = cap.read()
if not ret:
break
# 转换为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 进行高斯滤波
blurred = cv2.GaussianBlur(gray, (11, 11), 0)
# 进行二值化处理
thresh = cv2.threshold(blurred, 200, 255, cv2.THRESH_BINARY)[1]
# 进行形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# 寻找轮廓
contours, hierarchy = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 如果没有找到轮廓,则跳过
if len(contours) == 0:
continue
# 找到面积最大的轮廓
c = max(contours, key=cv2.contourArea)
# 计算轮廓的外接圆
((x, y), radius) = cv2.minEnclosingCircle(c)
# 计算轮廓的质心
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# 将测量值添加到列表中
measurements.append(np.array([[np.float32(center[0])], [np.float32(center[1])]]))
# 如果测量值列表长度大于1,则进行卡尔曼滤波
if len(measurements) > 1:
# 计算时间间隔dt
dt = 1.0 / 30
# 预测状态
x = np.dot(F, x)
P = np.dot(np.dot(F, P), F.T) + Q
# 更新状态
y = measurements[-1] - np.dot(H, x)
S = np.dot(np.dot(H, P), H.T) + R
K = np.dot(np.dot(P, H.T), np.linalg.inv(S))
x = x + np.dot(K, y)
P = np.dot((np.eye(4) - np.dot(K, H)), P)
# 将预测值和估计值添加到列表中
predictions.append(np.dot(H, x))
estimations.append(x)
# 在图像上绘制圆和质心
cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
# 显示图像
cv2.imshow("Frame", frame)
# 按下q键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放视频文件和窗口
cap.release()
cv2.destroyAllWindows()
```
阅读全文