yolov5torch.cuda.OutOfMemoryError: CUDA out of memory.
时间: 2023-09-21 07:04:08 浏览: 127
根据引用和引用的信息,yolov5torch.cuda.OutOfMemoryError: CUDA out of memory是由于尝试分配的内存超过了GPU的总容量导致的。这种情况下,您可以尝试以下解决方法:
1. 减小batch_size: 减少每个批次中的样本数量,这样可以降低内存需求。
2. 使用item()属性: 当取torch变量标量值时,使用item()属性可以释放显存,避免过多的内存占用。
3. 测试阶段的优化: 在测试阶段,可以添加一些代码来减少内存使用,但需要注意不要影响模型的性能和结果。
这些方法可以帮助您解决CUDA out of memory错误。希望对您有帮助!<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [报错记录torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 90.00 MiB (GPU 0; 7.93 ...](https://blog.csdn.net/gongkeguo/article/details/127674524)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [训练yolov5时出现RuntimeError: CUDA out of memory](https://blog.csdn.net/weixin_43945848/article/details/126266421)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [pytorch模型提示超出内存RuntimeError: CUDA out of memory.](https://download.csdn.net/download/weixin_38552305/14884908)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文