遗传算法求解tsp问题变异算子的改进前后对比并给出代码
时间: 2023-06-10 15:06:04 浏览: 125
基于改进的遗传算法求解TSP代码
4星 · 用户满意度95%
遗传算法是一种基于自然界的进化论思想而开发的一种搜索算法,它可以用来求解很多组合优化问题,其中包括TSP问题。TSP问题是指给定一个包含n个城市的旅行地图,求解一条路径,使得路径从起点开始,经过每个城市恰好一次,最后回到起点,并且路径的总长度最小。
在遗传算法中,变异算子是非常重要的一部分,它可以使得种群中的个体产生新的变化,从而增加种群的多样性,避免陷入局部最优解。一般来说,变异算子会随机选择一个个体,并对其进行一些变化,比如说交换两个城市的位置或者翻转一段路径。但是这种变异算子往往会导致新的个体与原有的个体相似度很高,从而不利于种群的多样性。
因此,我们需要对变异算子进行改进,使得变异后的个体与原有的个体差异更大,从而增加种群的多样性。一种常见的改进方法是双重变异算子,即在变异算子中加入两种变化方式,比如说交换两个城市和插入一个城市。这样可以使得变异后的个体与原有的个体差异更大,从而提高了种群的多样性。
以下是一个使用遗传算法求解TSP问题的Python代码,其中包括了双重变异算子的实现:
```python
import random
import numpy as np
# TSP问题的城市坐标
cities = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])
# 种群大小
pop_size = 50
# 变异概率
mutation_rate = 0.1
# 最大迭代次数
max_iter = 1000
# 计算每个个体的适应度
def fitness(individual):
total_distance = 0
for i in range(len(individual)):
if i == len(individual) - 1:
j = 0
else:
j = i + 1
city_i = cities[individual[i]]
city_j = cities[individual[j]]
distance = np.sqrt((city_i[0] - city_j[0])**2 + (city_i[1] - city_j[1])**2)
total_distance += distance
fitness = 1 / total_distance
return fitness
# 初始化种群
def init_population(pop_size):
population = []
for i in range(pop_size):
individual = list(range(len(cities)))
random.shuffle(individual)
population.append(individual)
return population
# 选择操作
def selection(population):
fitness_list = [fitness(individual) for individual in population]
total_fitness = sum(fitness_list)
probabilities = [fitness / total_fitness for fitness in fitness_list]
selected_population = []
for i in range(len(population)):
selected_individual = random.choices(population, weights=probabilities)[0]
selected_population.append(selected_individual)
return selected_population
# 变异操作
def mutation(individual):
if random.random() < mutation_rate:
new_individual = list(individual)
mutation_type = random.randint(1, 2)
if mutation_type == 1:
# 交换两个城市的位置
i, j = random.sample(range(len(individual)), 2)
new_individual[i], new_individual[j] = new_individual[j], new_individual[i]
elif mutation_type == 2:
# 插入一个城市
i, j = random.sample(range(len(individual)), 2)
city = new_individual.pop(i)
new_individual.insert(j, city)
return new_individual
else:
return individual
# 交叉操作
def crossover(individual1, individual2):
point1 = random.randint(0, len(individual1) - 1)
point2 = random.randint(point1, len(individual1))
new_individual1 = individual1[:point1] + individual2[point1:point2] + individual1[point2:]
new_individual2 = individual2[:point1] + individual1[point1:point2] + individual2[point2:]
return new_individual1, new_individual2
# 遗传算法求解TSP问题
def genetic_algorithm():
population = init_population(pop_size)
for i in range(max_iter):
selected_population = selection(population)
new_population = []
while len(new_population) < pop_size:
individual1, individual2 = random.sample(selected_population, 2)
new_individual1, new_individual2 = crossover(individual1, individual2)
new_population.append(mutation(new_individual1))
new_population.append(mutation(new_individual2))
population = new_population
best_individual = max(population, key=fitness)
print('Iteration {}: Best Individual = {}, Fitness = {}'.format(i, best_individual, fitness(best_individual)))
return best_individual
# 执行遗传算法
best_individual = genetic_algorithm()
print('Best Tour = {}, Length = {}'.format(best_individual, 1 / fitness(best_individual)))
```
上述代码中,变异算子的实现在mutation函数中。在该函数中,我们首先判断是否需要进行变异,如果需要,则随机选择一种变异方式(交换两个城市或插入一个城市),并对个体进行变异。如果不需要进行变异,则直接返回原有的个体。
在遗传算法的主循环中,我们使用mutation函数对个体进行变异。由于双重变异算子的实现比较复杂,因此我们在mutation函数中实现了两种变异方式,即交换两个城市和插入一个城市。在实际应用中,我们可以根据具体问题的特点,选择不同的变异方式。
阅读全文