多变量时间序列模型,LSTM matlab
时间: 2023-08-23 22:05:48 浏览: 92
基于Matlab的LSTM模型时间序列多步预测——多对单
5星 · 资源好评率100%
在 MATLAB 中,可以使用深度学习工具箱中的 LSTM 网络来建立多变量时间序列模型。以下是一个简单的示例:
首先,导入数据,假设我们有一个包含多个变量的时间序列数据集 X,每个时间点都有 k 个变量:
```matlab
load data.mat
X = data;
```
然后,将数据集拆分为训练集和测试集:
```matlab
train_ratio = 0.8;
train_size = floor(train_ratio * size(X, 1));
train_set = X(1:train_size, :);
test_set = X(train_size+1:end, :);
```
接着,将数据转换为 LSTM 网络所需的格式:
```matlab
XTrain = cell(size(train_set, 1)-1,1);
YTrain = cell(size(train_set, 1)-1,1);
for i = 1:size(train_set, 1)-1
XTrain{i} = train_set(i,:)';
YTrain{i} = train_set(i+1,:)';
end
XTest = cell(size(test_set, 1)-1,1);
YTest = cell(size(test_set, 1)-1,1);
for i = 1:size(test_set, 1)-1
XTest{i} = test_set(i,:)';
YTest{i} = test_set(i+1,:)';
end
```
然后,建立 LSTM 网络模型:
```matlab
num_features = size(X, 2);
num_hidden_units = 100;
num_layers = 2;
layers = [ ...
sequenceInputLayer(num_features)
lstmLayer(num_hidden_units, 'OutputMode', 'last', 'NumLayers', num_layers)
fullyConnectedLayer(num_features)
regressionLayer];
max_epochs = 100;
mini_batch_size = 10;
options = trainingOptions('adam', ...
'ExecutionEnvironment','auto', ...
'MaxEpochs',max_epochs, ...
'MiniBatchSize',mini_batch_size, ...
'SequenceLength','longest', ...
'Shuffle','never', ...
'GradientThreshold',1, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',50, ...
'Verbose',0);
net = trainNetwork(XTrain, YTrain, layers, options);
```
最后,用测试数据集评估模型的表现:
```matlab
YPred = predict(net, XTest, 'MiniBatchSize', 1);
mse = mean((cell2mat(YPred) - cell2mat(YTest)).^2);
rmse = sqrt(mse);
```
这是一个简单的示例,实际应用中可能需要对模型进行更多的调参和优化。
阅读全文