TORCH.SPECIAL介绍

时间: 2023-10-31 22:19:42 浏览: 47
torch.special是PyTorch中专门用于特殊函数计算的一个模块,提供了一系列基本的特殊函数,例如Gamma函数、Beta函数、Error函数、Erf函数、LogGamma函数、Digamma函数、Polygamma函数等等。 这些特殊函数在深度学习中经常用于定义损失函数、正则化项等。torch.special中最常用的函数包括: - torch.lgamma: 计算对数Gamma函数。 - torch.digamma: 计算Digamma函数。 - torch.erf: 计算Erf函数。 - torch.erfc: 计算Erfc函数。 - torch.betainc: 计算不完全Beta函数。 - torch.i0: 计算修正的0阶贝塞尔函数。 - torch.i1: 计算修正的1阶贝塞尔函数。 除了这些基本的特殊函数外,torch.special还提供了一些高级的特殊函数,例如计算F函数、计算G函数、计算Jacobi多项式等等。 总之,torch.special是PyTorch中非常重要的一个模块,为用户提供了丰富的特殊函数计算功能,使得用户可以更方便地进行深度学习中的各种数学计算。
相关问题

ModuleNotFoundError: No module named 'torch.special'

回答: ModuleNotFoundError: No module named 'torch.special'错误通常是由于缺少torch.special模块导致的。这个模块是PyTorch的一部分,用于处理特殊的数学函数。解决这个问题的方法是确保你安装的PyTorch版本是正确的,并且包含了torch.special模块。你可以尝试重新安装PyTorch,确保使用了正确的版本。另外,你还可以尝试更新你的Python环境和相关的依赖库,以确保它们与PyTorch兼容。如果问题仍然存在,你可以尝试在PyTorch的官方论坛或社区寻求帮助,他们可能会提供更具体的解决方案。 #### 引用[.reference_title] - *1* [linux平台下安装完torch仍然显示ModuleNotFoundError: No module named ‘torch](https://blog.csdn.net/goodgoodstudy___/article/details/123524254)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [ModuleNotFoundError: No module named ‘torch‘ 解决方案](https://blog.csdn.net/thy0000/article/details/122652349)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [报错ModuleNotFoundError: No module named ‘IPython](https://blog.csdn.net/tanmx219/article/details/120587250)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

用torch.nn来作

好的,我们可以使用PyTorch中的nn模块来构建类ChatGPT的AI。首先,我们需要定义一个GPT模型,它由多个层组成,每个层都由多个自注意力和前馈神经网络组成。以下是一个基本的GPT模型实现: ```python import torch import torch.nn as nn class GPTModel(nn.Module): def __init__(self, vocab_size, embedding_dim, num_layers, num_heads, hidden_dim): super(GPTModel, self).__init__() # 词嵌入层 self.embedding = nn.Embedding(vocab_size, embedding_dim) # 多层自注意力层 self.layers = nn.ModuleList([ nn.TransformerEncoderLayer(d_model=embedding_dim, nhead=num_heads, dim_feedforward=hidden_dim) for _ in range(num_layers) ]) # 输出层 self.fc = nn.Linear(embedding_dim, vocab_size) def forward(self, x): # 输入x的shape为(batch_size, seq_length) # 将输入转换为(batch_size, seq_length, embedding_dim) x = self.embedding(x) # 经过多层自注意力层 for layer in self.layers: x = layer(x) # 计算输出分数 # 输出的shape为(batch_size, seq_length, vocab_size) x = self.fc(x) return x ``` 接下来,我们可以定义一个基于GPT模型的类ChatGPT,该类将包含以下方法: - `__init__`:初始化ChatGPT模型,并加载预训练模型(如果有的话)。 - `tokenize`:将输入的文本转换为模型可以理解的标记序列。 - `generate`:根据给定的输入,生成一个回复。 - `train`:使用给定的训练数据对模型进行训练。 ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from transformers import GPT2Tokenizer class ChatGPT(nn.Module): def __init__(self, vocab_size, embedding_dim=256, num_layers=4, num_heads=8, hidden_dim=1024, device='cpu'): super(ChatGPT, self).__init__() self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2') self.model = GPTModel(vocab_size, embedding_dim, num_layers, num_heads, hidden_dim) self.device = device self.model.to(self.device) def tokenize(self, text): # 将输入的文本转换为模型可以理解的标记序列 inputs = self.tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') input_ids = inputs['input_ids'].to(self.device) return input_ids def generate(self, input_text, max_length=50, temperature=1.0): # 生成一个回复 input_ids = self.tokenize(input_text) output = self.model.generate(input_ids, max_length=max_length, temperature=temperature) return self.tokenizer.decode(output[0], skip_special_tokens=True) def train(self, dataset, batch_size=32, num_epochs=10, learning_rate=1e-3): # 使用给定的训练数据对模型进行训练 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) optimizer = optim.Adam(self.model.parameters(), lr=learning_rate) criterion = nn.CrossEntropyLoss() for epoch in range(num_epochs): running_loss = 0.0 for i, batch in enumerate(dataloader): # 将数据加载到设备上 input_ids = batch['input_ids'].to(self.device) targets = batch['target_ids'].to(self.device) # 将输入传递给模型 outputs = self.model(input_ids[:, :-1]) # 计算损失并进行反向传播 loss = criterion(outputs.reshape(-1, outputs.shape[-1]), targets.reshape(-1)) optimizer.zero_grad() loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[Epoch %d, Batch %d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 ``` 在上面的代码中,我们使用了`transformers`库中的GPT2Tokenizer来进行文本处理,并且在训练时使用了交叉熵损失函数和Adam优化器。请注意,由于GPT模型需要大量的计算资源和时间进行训练,所以在实际应用中,通常使用预训练模型来进行微调。

相关推荐

import torch, os, cv2 from model.model import parsingNet from utils.common import merge_config from utils.dist_utils import dist_print import torch import scipy.special, tqdm import numpy as np import torchvision.transforms as transforms from data.dataset import LaneTestDataset from data.constant import culane_row_anchor, tusimple_row_anchor if __name__ == "__main__": torch.backends.cudnn.benchmark = True args, cfg = merge_config() dist_print('start testing...') assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide'] if cfg.dataset == 'CULane': cls_num_per_lane = 18 elif cfg.dataset == 'Tusimple': cls_num_per_lane = 56 else: raise NotImplementedError net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4), use_aux=False).cuda() # we dont need auxiliary segmentation in testing state_dict = torch.load(cfg.test_model, map_location='cpu')['model'] compatible_state_dict = {} for k, v in state_dict.items(): if 'module.' in k: compatible_state_dict[k[7:]] = v else: compatible_state_dict[k] = v net.load_state_dict(compatible_state_dict, strict=False) net.eval() img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) if cfg.dataset == 'CULane': splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits] img_w, img_h = 1640, 590 row_anchor = culane_row_anchor elif cfg.dataset == 'Tusimple': splits = ['test.txt'] datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits] img_w, img_h = 1280, 720 row_anchor = tusimple_row_anchor else: raise NotImplementedError for split, dataset in zip(splits, datasets): loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1) fourcc = cv2.VideoWriter_fourcc(*'MJPG') print(split[:-3]+'avi') vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h)) for i, data in enumerate(tqdm.tqdm(loader)): imgs, names = data imgs = imgs.cuda() with torch.no_grad(): out = net(imgs) col_sample = np.linspace(0, 800 - 1, cfg.griding_num) col_sample_w = col_sample[1] - col_sample[0] out_j = out[0].data.cpu().numpy() out_j = out_j[:, ::-1, :] prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) idx = np.arange(cfg.griding_num) + 1 idx = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == cfg.griding_num] = 0 out_j = loc # import pdb; pdb.set_trace() vis = cv2.imread(os.path.join(cfg.data_root,names[0])) for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) vout.write(vis) vout.release()

import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words)

import torchfrom transformers import BertTokenizer, BertModel# 加载Bert预训练模型和tokenizermodel = BertModel.from_pretrained('bert-base-chinese')tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')# 微博文本和种子词text = '今天天气真好,心情非常愉快!'seeds = ['天气', '心情', '愉快']# 将微博文本和种子词转换为Bert输入格式inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True)# 使用Bert模型获取微博文本和种子词的词向量with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size]# 计算种子词和微博文本中所有词语的余弦相似度text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size]seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, seq_len, hidden_size] -> [batch_size, hidden_size]cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size]# 获取相似度最高的词语similar_words = []for i in range(len(seeds)): seed_similarities = cosine_similarities[i, :].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word)print(similar_words) 上述修改后的代码输出全是['[CLS]', '[CLS]', '[CLS]'],这不是我想要的结果啊,我想要的是微博文本的词语和种子词很相似的所有词语,而不是bert自动添加的特殊标记符,该怎么办

from transformers import pipeline, BertTokenizer, BertModel import numpy as np import torch import jieba tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') ner_pipeline = pipeline('ner', model='bert-base-chinese') with open('output/weibo1.txt', 'r', encoding='utf-8') as f: data = f.readlines() def cosine_similarity(v1, v2): return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) def get_word_embedding(word): input_ids = tokenizer.encode(word, add_special_tokens=True) inputs = torch.tensor([input_ids]) outputs = model(inputs)[0][0][1:-1] word_embedding = np.mean(outputs.detach().numpy(), axis=0) return word_embedding def get_privacy_word(seed_word, data): privacy_word_list = [] seed_words = jieba.lcut(seed_word) jieba.load_userdict('data/userdict.txt') for line in data: words = jieba.lcut(line.strip()) ner_results = ner_pipeline(''.join(words)) for seed_word in seed_words: seed_word_embedding = get_word_embedding(seed_word) for ner_result in ner_results: if ner_result['word'] == seed_word and ner_result['entity'] == 'O': continue if ner_result['entity'] != seed_word: continue word = ner_result['word'] if len(word) < 3: continue word_embedding = get_word_embedding(word) similarity = cosine_similarity(seed_word_embedding, word_embedding) print(similarity, word) if similarity >= 0.6: privacy_word_list.append(word) privacy_word_set = set(privacy_word_list) return privacy_word_set 上述代码运行之后,结果为空集合,哪里出问题了,帮我修改一下

最新推荐

recommend-type

【车牌识别】 GUI BP神经网络车牌识别(带语音播报)【含Matlab源码 668期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4
recommend-type

3文件需求申请单.xls

3文件需求申请单.xls
recommend-type

【脑肿瘤检测】 GUI SOM脑肿瘤检测【含Matlab源码 2322期】.zip

【脑肿瘤检测】 GUI SOM脑肿瘤检测【含Matlab源码 2322期】
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依