shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))] shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))] assert (split == 'train' or split == 'test') shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]] # (shape_name, shape_txt_file_path) 元组列表 self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i]) + '.txt') for i in range(len(shape_ids[split]))] print('The size of %s data is %d' % (split, len(self.datapath)))
时间: 2023-05-16 12:05:54 浏览: 102
这段代码的作用是读取两个文件(modelnet40_train.txt和modelnet40_test.txt)中的内容,并将其存储在一个名为shape_ids的字典中。字典中包含两个键值对,分别为'train'和'test'。split变量用于指定读取哪个文件。读取后,将每行的内容去除末尾的空格,并将其存储为一个列表。接着,使用列表推导式将每个形状的名称提取出来,并将其存储在一个名为shape_names的列表中。
相关问题
解释一下 def __init__(self, txt, transform=None, target_transform=None, loader=default_loader): fh = open(txt, 'r') imgseqs = [] for line in fh: line = line.strip('\n') line = line.rstrip() imgseqs.append(line) self.num_samples = len(imgseqs) self.imgseqs = imgseqs self.transform = transform self.target_transform = target_transform self.loader = loader
这段代码是一个类的初始化函数。参数包括txt文件路径、transform函数(用于数据预处理)、target_transform函数、loader加载器,默认为default_loader。这个函数会打开txt文件,读取其中的每一行,去除行末的换行符,然后将每一行加入到imgseqs列表中。num_samples变量保存了imgseqs列表的长度(即样本数量),imgseqs列表保存了每一个样本数据的路径。transform、target_transform和loader参数则用于数据预处理和加载。
优化代码import os import re import pandas as pd from pandas import DataFrame lst1=[] lst2=[] path1 = r'D:\C-cn' path2 = r'D:\C-en' files1 = os.listdir(path1) files2 = os.listdir(path2) lst1=[] lst2=[] reg1=re.compile(r"[^。?!…]*[。?!……]") reg2=re.compile(r'.*\.[\n ]') df1 = [] df2 = [] for i in range(0,39): domain=os.path.abspath(r'D:\C-cn') file1=os.path.join(domain,files1[i]) fn = open(str(file1),encoding='gbk') f1 = fn.readlines() #print(f1) for line in f1: line=line.rstrip('\n') if "。" not in line: lst1.append(line) else: lis=reg1.findall(line) for j in lis: lst1.append(j) data1=DataFrame({"Chinese":lst1}) df1.append(data1) df1 = pd.concat(df1) df1.to_excel("Chinese.xlsx",index="false") for i in range(0,39): domains=os.path.abspath(r'D:\C-en') file2=os.path.join(domains,files2[i]) ft = open(str(file2),encoding='gbk') f2 = ft.readlines() print(f2) for line in f2: if "." not in line: line=line.rstrip("\n") lst2.append(line) else: liss=line.split(". ") for j in liss: j=j+"." lst2.append(j) data2=DataFrame({"English":lst2}) df2.append(data2) df2 = pd.concat(df2)# 合并所有数据 df2.to_excel("English.xlsx",index="false")
这段代码可以进行一些优化,包括:
1. 将重复的代码封装成函数,避免重复代码。
2. 不需要在每次迭代时都重新初始化 `lst1` 和 `lst2` 列表,可以将其初始化放在循环外面。
3. 在使用 `pandas` 库时,最好使用 `read_csv()` 函数和 `to_csv()` 函数,而不是 `DataFrame()` 和 `to_excel()` 函数。
下面是优化后的代码:
```python
import os
import re
import pandas as pd
def get_sentences(file_path, regex):
with open(file_path, encoding='gbk') as f:
lines = f.readlines()
sentences = []
for line in lines:
line = line.rstrip('\n')
if "。" not in line:
sentences.append(line)
else:
lis = regex.findall(line)
for j in lis:
sentences.append(j)
return sentences
def get_english_sentences(file_path):
with open(file_path, encoding='gbk') as f:
lines = f.readlines()
sentences = []
for line in lines:
if "." not in line:
line = line.rstrip("\n")
sentences.append(line)
else:
liss = line.split(". ")
for j in liss:
j = j + "."
sentences.append(j)
return sentences
path1 = r'D:\C-cn'
path2 = r'D:\C-en'
files1 = os.listdir(path1)
files2 = os.listdir(path2)
reg1 = re.compile(r"[^。?!…]*[。?!……]")
reg2 = re.compile(r'.*\.[\n ]')
lst1 = []
for i in range(0, 39):
file1 = os.path.join(path1, files1[i])
lst1 += get_sentences(file1, reg1)
lst2 = []
for i in range(0, 39):
file2 = os.path.join(path2, files2[i])
lst2 += get_english_sentences(file2)
df1 = pd.DataFrame({"Chinese": lst1})
df1.to_csv("Chinese.csv", index=False)
df2 = pd.DataFrame({"English": lst2})
df2.to_csv("English.csv", index=False)
```
这里将中文和英文的句子分别存储到了 `Chinese.csv` 和 `English.csv` 文件中,以便后续的处理和分析。
阅读全文