在pytorch上构建卷积神经网络来实现VAE,并对矩阵数据进行降噪的代码
时间: 2023-03-20 08:01:35 浏览: 304
下面是一个使用PyTorch构建卷积神经网络实现VAE并对矩阵数据进行降噪的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class VAE(nn.Module):
def __init__(self, input_size, latent_size):
super(VAE, self).__init__()
# 定义编码器
self.encoder = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.Flatten(),
nn.Linear(128 * (input_size // 16) ** 2, 512),
nn.ReLU(),
nn.Linear(512, latent_size)
)
# 定义解码器
self.decoder = nn.Sequential(
nn.Linear(latent_size, 512),
nn.ReLU(),
nn.Linear(512, 128 * (input_size // 16) ** 2),
nn.ReLU(),
nn.Unflatten(1, (128, input_size // 16, input_size // 16)),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(32, 16, kernel_size=4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 1, kernel_size=3, stride=1, padding=1)
)
def encode(self, x):
# 编码器输出均值和标准差
h = self.encoder(x)
mu, logvar = h.chunk(2, dim=1)
return mu, logvar
def reparameterize(self, mu, logvar):
# 通过均值和标准差生成潜在向量
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
return z
def decode(self, z):
# 解码器输出重构结果
x_hat = self.decoder(z)
return x_hat
def forward(self, x):
# 前向传播
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
x_hat = self.decode(z)
return x_hat, mu, logvar
# 训练VAE模型
def train_vae(model, train_loader, optimizer, device):
model.train()
train_loss = 0
for batch_idx, data in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
return train_loss / len(train_loader.dataset)
# VAE模型
阅读全文