在pytorch上构建卷积神经网络实现VAE,并完成对矩阵数据集500(样本数)*100(特征数)的降噪处理,随机划分训练集样本数为400,测试集样本数为100的代码
时间: 2023-03-19 17:22:42 浏览: 111
以下是使用PyTorch构建卷积神经网络实现VAE,并对矩阵数据集进行降噪处理,随机划分训练集样本数为400,测试集样本数为100的代码示例:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split
# 定义VAE模型
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(100, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 32),
nn.ReLU()
)
self.mu = nn.Linear(32, 16)
self.logvar = nn.Linear(32, 16)
self.decoder = nn.Sequential(
nn.Linear(16, 32),
nn.ReLU(),
nn.Linear(32, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, 256),
nn.ReLU(),
nn.Linear(256, 100),
nn.Sigmoid()
)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
x = self.encoder(x)
mu = self.mu(x)
logvar = self.logvar(x)
z = self.reparameterize(mu, logvar)
x = self.decoder(z)
return x, mu, logvar
# 定义训练和测试函数
def train(model, dataloader, criterion, optimizer):
model.train()
train_loss = 0
for batch_idx, data in enumerate(dataloader):
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = criterion(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
return train_loss / len(dataloader.dataset)
def test(model, dataloader, criterion):
model.eval()
test_loss = 0
with torch.no_grad():
for data in dataloader:
recon_batch, mu, logvar = model(data)
test_loss += criterion(recon_batch, data, mu, logvar).item()
return test_loss / len(dataloader.dataset)
# 定义损失函数和优化器
def loss_function(recon_x, x, mu, logvar):
BCE = nn.functional.binary_cross_entropy(recon_x, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
model = VAE()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
criterion = loss_function
# 加载数据集并进行随机划分
data = torch.randn(500, 100)
target = data.clone()
train_data, test_data, train_target, test_target = train_test_split(data, target, test_size=0.2)
# 将数据转换为PyTorch张量并创建数据集和数据加载器
train_data = torch.FloatTensor(train_data)
test_data = torch.FloatTensor(test_data)
阅读全文