nmpc圆形轨迹跟踪C代码
时间: 2023-08-06 16:19:29 浏览: 140
C 代码 使用蒙特卡罗方法估计函数的积分 在 2D 圆形环形的内部annulus_monte_carlo.rar
以下是一个基于NMPC算法的圆形轨迹跟踪C代码示例:
```c
#include <stdio.h>
#include <math.h>
#define PI 3.1415926
#define N 10 // 控制时域
#define M 3 // 状态量
#define P 2 // 控制量
// 状态方程
void f(double x[M], double u[P], double dt, double y[M])
{
y[0] = x[0] + dt * x[2] * cos(x[3]);
y[1] = x[1] + dt * x[2] * sin(x[3]);
y[2] = x[2] + dt * u[0];
y[3] = x[3] + dt * u[1] / x[2];
}
// 预测误差函数
double h(double x[M], double u[P], double dt, double z[M])
{
double y[M];
f(x, u, dt, y);
z[0] = x[0] - y[0];
z[1] = x[1] - y[1];
z[2] = x[2] - y[2];
z[3] = x[3] - y[3];
return sqrt(z[0]*z[0] + z[1]*z[1] + z[2]*z[2] + z[3]*z[3]);
}
// 优化目标函数
double obj(double u[P], double x0[M], double dt)
{
double x1[M], x2[M], x3[M], x4[M], x5[M], x6[M], x7[M], x8[M], x9[M], x10[M];
double z1[M], z2[M], z3[M], z4[M], z5[M], z6[M], z7[M], z8[M], z9[M], z10[M];
f(x0, u, dt, x1);
f(x1, u, dt, x2);
f(x2, u, dt, x3);
f(x3, u, dt, x4);
f(x4, u, dt, x5);
f(x5, u, dt, x6);
f(x6, u, dt, x7);
f(x7, u, dt, x8);
f(x8, u, dt, x9);
f(x9, u, dt, x10);
double err = h(x1, u, dt, z1) + h(x2, u, dt, z2) + h(x3, u, dt, z3) + h(x4, u, dt, z4) + h(x5, u, dt, z5) + h(x6, u, dt, z6) + h(x7, u, dt, z7) + h(x8, u, dt, z8) + h(x9, u, dt, z9) + h(x10, u, dt, z10);
return err;
}
// 优化算法
void nmpc(double x0[M], double u0[P], double dt, double u[P])
{
double u1[P], u2[P], u3[P], u4[P], u5[P], u6[P], u7[P], u8[P], u9[P], u10[P];
double obj0 = obj(u0, x0, dt);
double obj1 = obj(u1, x0, dt);
double obj2 = obj(u2, x0, dt);
double obj3 = obj(u3, x0, dt);
double obj4 = obj(u4, x0, dt);
double obj5 = obj(u5, x0, dt);
double obj6 = obj(u6, x0, dt);
double obj7 = obj(u7, x0, dt);
double obj8 = obj(u8, x0, dt);
double obj9 = obj(u9, x0, dt);
double obj10 = obj(u10, x0, dt);
double obj_min = obj0;
int idx_min = 0;
if (obj1 < obj_min) { obj_min = obj1; idx_min = 1; }
if (obj2 < obj_min) { obj_min = obj2; idx_min = 2; }
if (obj3 < obj_min) { obj_min = obj3; idx_min = 3; }
if (obj4 < obj_min) { obj_min = obj4; idx_min = 4; }
if (obj5 < obj_min) { obj_min = obj5; idx_min = 5; }
if (obj6 < obj_min) { obj_min = obj6; idx_min = 6; }
if (obj7 < obj_min) { obj_min = obj7; idx_min = 7; }
if (obj8 < obj_min) { obj_min = obj8; idx_min = 8; }
if (obj9 < obj_min) { obj_min = obj9; idx_min = 9; }
if (obj10 < obj_min) { obj_min = obj10; idx_min = 10; }
switch (idx_min) {
case 0: u[0] = u0[0]; u[1] = u0[1]; break;
case 1: u[0] = u1[0]; u[1] = u1[1]; break;
case 2: u[0] = u2[0]; u[1] = u2[1]; break;
case 3: u[0] = u3[0]; u[1] = u3[1]; break;
case 4: u[0] = u4[0]; u[1] = u4[1]; break;
case 5: u[0] = u5[0]; u[1] = u5[1]; break;
case 6: u[0] = u6[0]; u[1] = u6[1]; break;
case 7: u[0] = u7[0]; u[1] = u7[1]; break;
case 8: u[0] = u8[0]; u[1] = u8[1]; break;
case 9: u[0] = u9[0]; u[1] = u9[1]; break;
case 10: u[0] = u10[0]; u[1] = u10[1]; break;
}
}
int main(void)
{
double x[M] = {0, 0, 1, PI/2}; // 初始状态
double u[P] = {0, 0}; // 初始控制量
double dt = 0.1; // 时间间隔
double r = 1; // 圆形半径
double center_x = 0; // 圆心横坐标
double center_y = 0; // 圆心纵坐标
double theta = 0; // 圆形轨迹的角度
for (int i = 0; i < 100; i++) {
// 计算圆心坐标
center_x = x[0] + r * cos(theta);
center_y = x[1] + r * sin(theta);
// 计算控制量
double u0[P] = {r * cos(theta+dt) - r * cos(theta), r * sin(theta+dt) - r * sin(theta)};
nmpc(x, u, dt, u0);
// 更新状态
f(x, u, dt, x);
// 更新角度
theta = atan2(center_y - x[1], center_x - x[0]);
printf("x=%.2f, y=%.2f, v=%.2f, theta=%.2f, u=[%.2f, %.2f]\n", x[0], x[1], x[2], x[3], u[0], u[1]);
}
return 0;
}
```
该代码实现了一个简单的NMPC算法,用于使一个小车沿着圆形轨迹移动。具体来说,每个时间步骤,代码会计算圆心坐标,然后用NMPC算法计算控制量,更新状态,最后更新角度。
阅读全文