可以再给我一份识别植物疾病的代码吗
时间: 2023-12-02 20:02:15 浏览: 78
当然可以!以下是一个使用深度学习技术识别植物疾病的Python代码示例,需要使用Keras框架以及预训练的模型文件。
```python
import numpy as np
import cv2
from keras.models import load_model
# 加载模型
model = load_model("plant_disease_detection.h5")
# 定义标签
labels = ["Apple___Apple_scab", "Apple___Black_rot", "Apple___Cedar_apple_rust", "Apple___healthy", "Blueberry___healthy", "Cherry_(including_sour)___Powdery_mildew", "Cherry_(including_sour)___healthy", "Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot", "Corn_(maize)___Common_rust_", "Corn_(maize)___Northern_Leaf_Blight", "Corn_(maize)___healthy", "Grape___Black_rot", "Grape___Esca_(Black_Measles)", "Grape___Leaf_blight_(Isariopsis_Leaf_Spot)", "Grape___healthy", "Orange___Haunglongbing_(Citrus_greening)", "Peach___Bacterial_spot", "Peach___healthy", "Pepper,_bell___Bacterial_spot", "Pepper,_bell___healthy", "Potato___Early_blight", "Potato___Late_blight", "Potato___healthy", "Raspberry___healthy", "Soybean___healthy", "Squash___Powdery_mildew", "Strawberry___Leaf_scorch", "Strawberry___healthy", "Tomato___Bacterial_spot", "Tomato___Early_blight", "Tomato___Late_blight", "Tomato___Leaf_Mold", "Tomato___Septoria_leaf_spot", "Tomato___Spider_mites Two-spotted_spider_mite", "Tomato___Target_Spot", "Tomato___Tomato_Yellow_Leaf_Curl_Virus", "Tomato___Tomato_mosaic_virus", "Tomato___healthy"]
# 定义图像大小
img_size = 256
# 加载测试图像
img = cv2.imread("test_image.jpg")
img = cv2.resize(img, (img_size, img_size))
img = np.reshape(img, [1, img_size, img_size, 3])
# 进行预测
pred = model.predict(img)
# 获取预测结果并输出
index = np.argmax(pred)
print("Predicted plant disease:", labels[index])
```
这段代码使用了一个预训练的深度学习模型,可以对输入的植物疾病图像进行快速分类。需要注意的是,在实际应用中,需要使用大量的训练数据来训练模型,并对模型进行优化和调整,以提高识别准确率和鲁棒性。
阅读全文