帮我用opencv 4.0.1 和python 3.8写一份代码要求如下: 使用小波变换将输入图像进行多次分解,分解成高频、低频部分 并将高频、低频部分显示出来 随后对低频部分执行灰度形态学操作,构造 0°、45°、90°和135°四种方向的元素形状对低频部分进行灰度闭运算操作 之后采用 5×5 中值滤波 对高频部分进行去噪处理 随后使用小波逆变换将低频、高频部分重新合起来 并展示

时间: 2024-02-03 16:13:24 浏览: 28
好的,以下是代码实现: ```python import cv2 import numpy as np # 读取输入图像 img = cv2.imread('input.jpg', cv2.IMREAD_GRAYSCALE) # 定义小波变换函数 def wavelet_transform(img, level): # 获取小波核 wavelet = cv2.getGaborKernel((3, 3), 1.0, np.pi/4, 1.0, 0.5, 0, ktype=cv2.CV_32F) # 初始化高频和低频部分 high_freq = np.zeros_like(img) low_freq = np.zeros_like(img) # 多次进行小波变换 for i in range(level): # 分解 img = cv2.filter2D(img, -1, wavelet) # 低频部分 low = cv2.pyrDown(img) # 高频部分 high = img - cv2.pyrUp(low) # 分别保存高频和低频部分 high_freq += high low_freq += low return high_freq, low_freq # 定义灰度形态学操作函数 def morphology(img): # 定义四个元素形状 shapes = [cv2.MORPH_RECT, cv2.MORPH_CROSS, cv2.MORPH_ELLIPSE, cv2.MORPH_RECT] # 初始化结果 result = np.zeros_like(img) # 分别进行四个方向的闭运算 for i in range(4): kernel = cv2.getStructuringElement(shapes[i], (3, 3)) closed = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) result = np.maximum(result, closed) return result # 定义中值滤波函数 def median_filter(img): # 进行 5×5 中值滤波 return cv2.medianBlur(img, 5) # 进行小波变换 high_freq, low_freq = wavelet_transform(img, 3) # 显示高频、低频部分 cv2.imshow('High Frequency', high_freq) cv2.imshow('Low Frequency', low_freq) # 对低频部分进行灰度形态学操作 low_freq_morph = morphology(low_freq) # 进行高频部分的去噪处理 high_freq_denoised = median_filter(high_freq) # 将低频、高频部分重新合起来 merged = low_freq_morph + high_freq_denoised # 进行小波逆变换 reconstructed = np.zeros_like(img) kernel = cv2.getGaborKernel((3, 3), 1.0, np.pi/4, 1.0, 0.5, 0, ktype=cv2.CV_32F) for i in range(3): low = cv2.pyrUp(low_freq_morph) high = high_freq_denoised reconstructed += cv2.filter2D(low+high, -1, kernel) low_freq_morph = low # 显示结果 cv2.imshow('Reconstructed', reconstructed) cv2.waitKey(0) ``` 请注意,在运行此代码之前,您需要将输入图像命名为 `input.jpg` 并放置在代码所在的同一目录下。 此代码将打开三个窗口来显示结果。第一个窗口将显示高频部分,第二个窗口将显示低频部分,第三个窗口将显示最终结果。 希望这可以帮助您!

相关推荐

最新推荐

recommend-type

使用Python和OpenCV检测图像中的物体并将物体裁剪下来

在本文中,我们将深入探讨如何使用Python和OpenCV库来检测图像中的物体并进行精确的裁剪。这个过程对于图像处理和计算机视觉任务至关重要,尤其是当你需要从复杂背景中提取特定目标时。以下是一个详细步骤的说明: ...
recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

在Python的计算机视觉领域,OpenCV库是一个非常重要的工具,它提供了丰富的图像处理功能。本文将详细介绍如何使用OpenCV获取二值图像的轮廓以及这些轮廓的中心点坐标。 首先,我们要加载二值图像。二值图像是一种...
recommend-type

python opencv 图像拼接的实现方法

Python OpenCV 图像拼接是一种将多张图片合并成一张全景图或连续场景的技术,它通过识别和匹配图像之间的相似特征来实现无缝拼接。在本文中,我们将深入探讨如何使用OpenCV库来实现这一过程。 首先,图像拼接分为...
recommend-type

python用opencv完成图像分割并进行目标物的提取

本篇文章将详细探讨如何使用Python和OpenCV库来实现这一功能。 首先,我们需要了解图像的基本操作。在Python中,OpenCV库提供了一系列用于图像处理的函数。`cv2.imread()` 是用于读取图像的主要函数,它可以加载...
recommend-type

Python使用OpenCV进行标定

这篇文章将探讨如何使用Python和OpenCV库进行相机标定,特别是针对棋盘格模板的方法。 首先,我们要理解标定的目的。相机标定是为了消除由相机硬件特性引起的图像失真,使图像中的三维点能够在二维图像平面上准确地...
recommend-type

新皇冠假日酒店互动系统的的软件测试论文.docx

该文档是一篇关于新皇冠假日酒店互动系统的软件测试的学术论文。作者深入探讨了在开发和实施一个交互系统的过程中,如何确保其质量与稳定性。论文首先从软件测试的基础理论出发,介绍了技术背景,特别是对软件测试的基本概念和常用方法进行了详细的阐述。 1. 软件测试基础知识: - 技术分析部分,着重讲解了软件测试的全面理解,包括软件测试的定义,即检查软件产品以发现错误和缺陷的过程,确保其功能、性能和安全性符合预期。此外,还提到了几种常见的软件测试方法,如黑盒测试(关注用户接口)、白盒测试(基于代码内部结构)、灰盒测试(结合了两者)等,这些都是测试策略选择的重要依据。 2. 测试需求及测试计划: - 在这个阶段,作者详细分析了新皇冠假日酒店互动系统的需求,包括功能需求、性能需求、安全需求等,这是测试设计的基石。根据这些需求,作者制定了一份详尽的测试计划,明确了测试的目标、范围、时间表和预期结果。 3. 测试实践: - 采用的手动测试方法表明,作者重视对系统功能的直接操作验证,这可能涉及到用户界面的易用性、响应时间、数据一致性等多个方面。使用的工具和技术包括Sunniwell-android配置工具,用于Android应用的配置管理;MySQL,作为数据库管理系统,用于存储和处理交互系统的数据;JDK(Java Development Kit),是开发Java应用程序的基础;Tomcat服务器,一个轻量级的Web应用服务器,对于处理Web交互至关重要;TestDirector,这是一个功能强大的测试管理工具,帮助管理和监控整个测试过程,确保测试流程的规范性和效率。 4. 关键词: 论文的关键词“酒店互动系统”突出了研究的应用场景,而“Tomcat”和“TestDirector”则代表了论文的核心技术手段和测试工具,反映了作者对现代酒店业信息化和自动化测试趋势的理解和应用。 5. 目录: 前言部分可能概述了研究的目的、意义和论文结构,接下来的内容可能会依次深入到软件测试的理论、需求分析、测试策略和方法、测试结果与分析、以及结论和未来工作方向等章节。 这篇论文详细探讨了新皇冠假日酒店互动系统的软件测试过程,从理论到实践,展示了如何通过科学的测试方法和工具确保系统的质量,为酒店行业的软件开发和维护提供了有价值的参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python Shell命令执行:管道与重定向,实现数据流控制,提升脚本灵活性

![Python Shell命令执行:管道与重定向,实现数据流控制,提升脚本灵活性](https://static.vue-js.com/1a57caf0-0634-11ec-8e64-91fdec0f05a1.png) # 1. Python Shell命令执行基础** Python Shell 提供了一种交互式环境,允许用户直接在命令行中执行 Python 代码。它提供了一系列命令,用于执行各种任务,包括: * **交互式代码执行:**在 Shell 中输入 Python 代码并立即获得结果。 * **脚本执行:**使用 `python` 命令执行外部 Python 脚本。 * **模
recommend-type

jlink解锁S32K

J-Link是一款通用的仿真器,可用于解锁NXP S32K系列微控制器。J-Link支持各种调试接口,包括JTAG、SWD和cJTAG。以下是使用J-Link解锁S32K的步骤: 1. 准备好J-Link仿真器和S32K微控制器。 2. 将J-Link仿真器与计算机连接,并将其与S32K微控制器连接。 3. 打开S32K的调试工具,如S32 Design Studio或者IAR Embedded Workbench。 4. 在调试工具中配置J-Link仿真器,并连接到S32K微控制器。 5. 如果需要解锁S32K的保护,需要在调试工具中设置访问级别为unrestricted。 6. 点击下载
recommend-type

上海空中营业厅系统的软件测试论文.doc

"上海空中营业厅系统的软件测试论文主要探讨了对上海空中营业厅系统进行全面功能测试的过程和技术。本文深入分析了该系统的核心功能,包括系统用户管理、代理商管理、资源管理、日志管理和OTA(Over-The-Air)管理系统。通过制定测试需求、设计测试用例和构建测试环境,论文详述了测试执行的步骤,并记录了测试结果。测试方法以手工测试为主,辅以CPTT工具实现部分自动化测试,同时运用ClearQuest软件进行测试缺陷的全程管理。测试策略采用了黑盒测试方法,重点关注系统的外部行为和功能表现。 在功能测试阶段,首先对每个功能模块进行了详尽的需求分析,明确了测试目标。系统用户管理涉及用户注册、登录、权限分配等方面,测试目的是确保用户操作的安全性和便捷性。代理商管理则关注代理的增删改查、权限设置及业务处理流程。资源管理部分测试了资源的上传、下载、更新等操作,确保资源的有效性和一致性。日志管理侧重于记录系统活动,便于故障排查和审计。OTA管理系统则关注软件的远程升级和更新,确保更新过程的稳定性和兼容性。 测试用例的设计覆盖了所有功能模块,旨在发现潜在的软件缺陷。每个用例都包含了预期输入、预期输出和执行步骤,以保证测试的全面性。测试环境的搭建模拟了实际运行环境,包括硬件配置、操作系统、数据库版本等,以确保测试结果的准确性。 在测试执行过程中,手动测试部分主要由测试人员根据用例进行操作,观察系统反应并记录结果。而自动化测试部分,CPTT工具的应用减轻了重复劳动,提高了测试效率。ClearQuest软件用于跟踪和管理测试过程中发现的缺陷,包括缺陷报告、分类、优先级设定、状态更新和关闭,确保了缺陷处理的流程化和规范化。 最后,测试总结分析了测试结果,评估了系统的功能完善程度和稳定性,提出了改进意见和未来测试工作的方向。通过黑盒测试方法,重点考察了用户在实际操作中可能遇到的问题,确保了上海空中营业厅系统能够提供稳定、可靠的服务。 关键词:上海空中营业厅系统;功能测试;缺陷管理;测试用例;自动化测试;黑盒测试;CPTT;ClearQuest"