pytorch 二元交叉熵损失函数不下降
时间: 2023-11-23 17:54:02 浏览: 101
在Pytorch中,二元交叉熵损失函数是常用的损失函数之一,用于二分类问题。该损失函数的值不一定是单调递减的,因为它是由sigmoid函数和log函数组成的。在训练过程中,如果模型的预测结果与真实标签不一致,损失函数的值会增加,反之则会减少。但是,由于sigmoid函数的存在,当预测结果越接近0或1时,损失函数的梯度会越小,导致训练过程变得缓慢。为了解决这个问题,可以使用BCEWithLogitsLoss函数,它将sigmoid函数和二元交叉熵损失函数合并在一起,可以更好地处理这种情况。
相关问题
pytorch 交叉熵损失函数
在Pytorch中,有两种常用的交叉熵损失函数用于二分类问题:BCELoss和BCEWithLogitsLoss。这两种损失函数都是基于二元交叉熵的概念。
BCELoss是Binary Cross Entropy Loss的缩写,它的输入是经过sigmoid处理后的预测值。它适用于预测值是概率的情况,输出的损失值是一个标量。
BCEWithLogitsLoss是在BCELoss的基础上进行了优化,它的输入是未经过sigmoid处理的预测值。它将sigmoid函数的计算和二元交叉熵的计算合并到了一起,可以提高数值的稳定性和计算效率。
为什么要使用softmax函数?softmax函数能够将一个向量映射为概率分布,将输入的数值转化为概率值,使得各个类别的预测结果之和为1。在多分类问题中,softmax函数通常与交叉熵损失函数一起使用,用来计算预测概率与真实标签之间的差异。
总结起来,Pytorch中的交叉熵损失函数可以用于二分类问题,其中BCELoss适用于预测值是概率的情况,而BCEWithLogitsLoss适用于未经过sigmoid处理的预测值。同时,softmax函数在多分类问题中常与交叉熵损失函数一起使用,用于计算预测概率与真实标签之间的差异。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
pytorch 交叉熵损失函数二分类
在Pytorch中,有两种常用的交叉熵损失函数用于二分类问题:BCELoss和BCEWithLogitsLoss。这两种损失函数都是基于二元交叉熵的概念。
BCELoss是Binary Cross Entropy Loss的缩写,它的输入是经过sigmoid处理后的预测值。它适用于预测值是概率的情况,输出的损失值是一个标量。
BCEWithLogitsLoss是在BCELoss的基础上进行了优化,它的输入是未经过sigmoid处理的预测值。它将sigmoid函数的计算和二元交叉熵的计算合并到了一起,可以提高数值的稳定性和计算效率。
为什么要使用softmax函数?softmax函数能够将一个向量映射为概率分布,将输入的数值转化为概率值,使得各个类别的预测结果之和为1。在多分类问题中,softmax函数通常与交叉熵损失函数一起使用,用来计算预测概率与真实标签之间的差异。
总结起来,Pytorch中的交叉熵损失函数可以用于二分类问题,其中BCELoss适用于预测值是概率的情况,而BCEWithLogitsLoss适用于未经过sigmoid处理的预测值。同时,softmax函数在多分类问题中常与交叉熵损失函数一起使用,用于计算预测概率与真实标签之间的差异。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [Pytorch交叉熵损失函数CrossEntropyLoss及BCE_withlogistic](https://blog.csdn.net/qq_41917697/article/details/112723261)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [【Pytorch】BCELoss和BCEWithLogitsLoss损失函数详解](https://download.csdn.net/download/weixin_38513794/14036605)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文