用Python实现em算法并回溯最优状态序列的代码
时间: 2024-03-06 12:51:12 浏览: 65
下面是使用Python实现EM算法并回溯最优状态序列的示例代码:
```python
import numpy as np
def forward_backward(obs, states, start_p, trans_p, emit_p):
# Forward probability
forward_prob = [{}]
for state in states:
forward_prob[0][state] = start_p[state] * emit_p[state][obs[0]]
for t in range(1, len(obs)):
forward_prob.append({})
for state in states:
forward_prob[t][state] = sum(forward_prob[t-1][prev_state] * trans_p[prev_state][state] * emit_p[state][obs[t]] for prev_state in states)
# Backward probability
backward_prob = [{} for _ in obs]
for state in states:
backward_prob[-1][state] = 1
for t in range(len(obs)-2, -1, -1):
for state in states:
backward_prob[t][state] = sum(trans_p[state][next_state] * emit_p[next_state][obs[t+1]] * backward_prob[t+1][next_state] for next_state in states)
# Posterior probability
posterior_prob = [{} for _ in obs]
total_prob = sum(forward_prob[-1].values())
for t in range(len(obs)):
for state in states:
posterior_prob[t][state] = forward_prob[t][state] * backward_prob[t][state] / total_prob
return forward_prob, backward_prob, posterior_prob
def viterbi(obs, states, start_p, trans_p, emit_p):
# Viterbi algorithm
viterbi_prob = [{}]
path = {}
for state in states:
viterbi_prob[0][state] = start_p[state] * emit_p[state][obs[0]]
path[state] = [state]
for t in range(1, len(obs)):
viterbi_prob.append({})
new_path = {}
for state in states:
(prob, state_) = max((viterbi_prob[t-1][prev_state] * trans_p[prev_state][state] * emit_p[state][obs[t]], prev_state) for prev_state in states)
viterbi_prob[t][state] = prob
new_path[state] = path[state_] + [state]
path = new_path
# Find the optimal path
(prob, state) = max((viterbi_prob[-1][state], state) for state in states)
return prob, path[state]
def em_algorithm(obs, states, start_p, trans_p_init, emit_p_init, epsilon=0.001, max_iter=100):
trans_p = trans_p_init.copy()
emit_p = emit_p_init.copy()
for i in range(max_iter):
# E step
forward_prob, backward_prob, posterior_prob = forward_backward(obs, states, start_p, trans_p, emit_p)
# M step
start_p = {state: posterior_prob[0][state] for state in states}
for state in states:
for next_state in states:
trans_p[state][next_state] = sum(posterior_prob[t][state] * trans_p[state][next_state] * emit_p[next_state][obs[t+1]] * backward_prob[t+1][next_state] for t in range(len(obs)-1)) / sum(posterior_prob[t][state] * backward_prob[t][state] for t in range(len(obs)-1))
for observation in set(obs):
emit_p[state][observation] = sum(posterior_prob[t][state] for t in range(len(obs)) if obs[t] == observation) / sum(posterior_prob[t][state] for t in range(len(obs))))
# Check for convergence
log_likelihoods = [np.log(np.sum([forward_prob[t][state] * backward_prob[t][state] for state in states])) for t in range(len(obs))]
log_likelihood = np.sum(log_likelihoods)
if i > 0 and abs(log_likelihood - prev_log_likelihood) < epsilon:
break
prev_log_likelihood = log_likelihood
# Find the optimal state sequence
prob, state_seq = viterbi(obs, states, start_p, trans_p, emit_p)
return prob, state_seq
```
其中,`obs`表示观测序列,`states`表示状态集合,`start_p`表示状态初始概率分布,`trans_p`表示状态转移概率矩阵,`emit_p`表示状态发射概率矩阵。`forward_backward`函数实现前向-后向算法,返回前向概率、后向概率和后验概率;`viterbi`函数实现维特比算法,返回最大概率和最优状态序列;`em_algorithm`函数实现EM算法,返回最大似然和最优状态序列。
阅读全文