im = imread('lena.jpg'); % 创建PSF psf = fspecial('gaussian', [15 15], 5); % 对图像进行卷积 im_blur = imfilter(im, psf, 'circular', 'conv'); % 添加高斯噪声 sigma = 25; im_noisy = imnoise(im_blur, 'gaussian', 0, (sigma/255)^2); % 显示模糊且有噪声的图像 subplot(2, 2, 1); imshow(im_noisy); title('模糊且有噪声的图像'); % 进行逆滤波 im_recovered_inv = deconvwnr(im_noisy, psf, 0); subplot(2, 2, 2); imshow(im_recovered_inv); title('逆滤波复原的图像');逆滤波这里有问题,改正代码
时间: 2023-11-27 21:03:25 浏览: 111
jpg_lena.rar_jpeg压缩算法_jpg matlab 压缩_lena.jpg_lena压缩_帧内压缩
好的,根据您的描述,可以尝试使用Wiener滤波来代替逆滤波,因为逆滤波对噪声比较敏感,容易产生较大的估计误差。以下是可能的代码实现:
```matlab
% 读入图像和模糊核
im = imread('lena.jpg');
im = im2double(im);
psf = fspecial('gaussian', [15 15], 5);
% 对图像进行卷积
im_blur = imfilter(im, psf, 'circular', 'conv');
% 添加高斯噪声
sigma = 25;
im_noisy = imnoise(im_blur, 'gaussian', 0, (sigma/255)^2);
% 显示模糊且有噪声的图像
subplot(2, 2, 1); imshow(im_noisy); title('模糊且有噪声的图像');
% 进行Wiener滤波
SNR = 1/(sigma/255)^2;
im_recovered_wiener = deconvwnr(im_noisy, psf, 1/SNR);
subplot(2, 2, 2); imshow(im_recovered_wiener); title('Wiener滤波复原的图像');
```
这段代码中,我们首先读入图像和模糊核,然后对图像进行卷积得到模糊图像。接下来,我们添加高斯噪声,并将其显示出来。然后,我们根据噪声的信噪比计算Wiener滤波的参数,使用`deconvwnr`函数对图像进行复原。最后,我们将复原结果显示出来。
阅读全文