用Python实现Excel数据预测
时间: 2024-04-28 10:05:14 浏览: 98
要使用Python实现Excel数据预测,可以使用以下步骤:
1. 导入必要的库
```python
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```
2. 读取Excel文件
```python
df = pd.read_excel('data.xlsx')
```
3. 确定预测变量和目标变量
预测变量是用来预测目标变量的变量,目标变量是我们想要预测的变量。在这个例子中,我们将使用“年份”作为预测变量,使用“销售额”作为目标变量。
```python
X = df['年份'].values.reshape(-1, 1)
y = df['销售额'].values.reshape(-1, 1)
```
4. 划分数据集为训练集和测试集
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
5. 建立线性回归模型
```python
regressor = LinearRegression()
regressor.fit(X_train, y_train)
```
6. 预测目标变量
```python
y_pred = regressor.predict(X_test)
```
7. 可视化预测结果
```python
import matplotlib.pyplot as plt
plt.scatter(X_test, y_test, color='gray')
plt.plot(X_test, y_pred, color='red', linewidth=2)
plt.show()
```
完整代码如下:
```python
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
df = pd.read_excel('data.xlsx')
X = df['年份'].values.reshape(-1, 1)
y = df['销售额'].values.reshape(-1, 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
plt.scatter(X_test, y_test, color='gray')
plt.plot(X_test, y_pred, color='red', linewidth=2)
plt.show()
```
这个例子中,我们使用了线性回归模型来预测销售额。你也可以尝试使用其他的模型,例如决策树、随机森林等。
阅读全文
相关推荐


















