用pytorch写一段代码:以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集,故障类型标签包括:正常、内圈故障、外圈故障和滚动体故障四类。首先将一维故障信号转换为二维灰度图作为CNN模型的输...
时间: 2024-03-26 20:35:04 浏览: 220
好的,我将为您提供代码示例。首先,您需要准备好CWRU轴承故障的振动信号数据库,并将其转换为灰度图像。
接下来,您可以使用PyTorch来创建一个简单的CNN模型,代码如下:
```python
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self, num_classes=4):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(128 * 25 * 25, 512)
self.fc2 = nn.Linear(512, num_classes)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = self.pool(torch.relu(self.conv3(x)))
x = x.view(-1, 128 * 25 * 25)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
```
这个网络由三个卷积层和两个全连接层组成。在这里,我们使用了`torch.nn`模块来定义网络。`Conv2d`层用于卷积操作,`MaxPool2d`层用于池化操作,`Linear`层用于全连接操作。
接下来,您需要定义一些超参数,例如批大小、学习率和训练周期,代码如下:
```python
batch_size = 32
learning_rate = 0.001
num_epochs = 10
```
然后,您需要定义数据集和数据加载器,代码如下:
```python
import torchvision.transforms as transforms
import torchvision.datasets as datasets
data_transforms = transforms.Compose([
transforms.Resize((100, 100)),
transforms.ToTensor(),
])
train_dataset = datasets.ImageFolder('path/to/train/folder', transform=data_transforms)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.ImageFolder('path/to/test/folder', transform=data_transforms)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```
在这里,我们使用`ImageFolder`类来加载数据集。`data_transforms`定义了一系列的预处理操作,包括将图像大小调整为100x100、将图像转换为张量。`train_loader`和`test_loader`用于加载训练数据和测试数据。
最后,您需要定义损失函数和优化器,并开始训练模型,代码如下:
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}')
# Test the model
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Test Accuracy of the model on the {total} test images: {100 * correct / total} %')
```
在这里,我们使用交叉熵损失函数和Adam优化器来训练模型。我们还使用GPU(如果可用)来加速训练过程。在每个周期的末尾,我们计算测试准确性,并将其打印出来。
这就是PyTorch中使用CNN进行图像分类的基本流程。请注意,这只是一个简单的示例,您可以根据您的需求来修改和扩展代码。
阅读全文