解释 end = start + bbox_num[i] bbox_res = batch_res['bbox'][start:end] \ if 'bbox' in batch_res else None mask_res = batch_res['mask'][start:end] \ if 'mask' in batch_res else None segm_res = batch_res['segm'][start:end] \ if 'segm' in batch_res else None keypoint_res = batch_res['keypoint'][start:end] \ if 'keypoint' in batch_res else None
时间: 2024-02-14 14:18:46 浏览: 55
这段代码的作用是从模型输出(batch_res)中提取出与当前图片相关的目标检测结果。
具体来说,这个代码段使用了一个for循环,遍历了每个输入图片,并根据输入图片对应的输出结果来提取目标检测结果。其中,i表示当前图片在输入张量中的索引。
首先,代码根据bbox_num[i]来计算当前图片中目标的数量,并使用start和end来表示当前图片中目标在batch_res中的起始位置和结束位置。这里假设bbox_num是一个列表,其中第i个元素表示第i张图片中目标的数量。
接下来,代码使用多个if语句来检查batch_res中是否包含bbox、mask、segm和keypoint等字段。如果包含,就从batch_res中提取出与当前图片相关的结果,并将其保存在相应的变量中,例如bbox_res、mask_res等。
最终,代码返回了bbox_res、mask_res、segm_res和keypoint_res等变量。这些变量可以在后续的处理中使用,例如可视化、评估等。
相关问题
epoch in range(epoch_num): for batch_id, (img, label, bbox, landmark) in enumerate(train_loader): img = img.to(device) label = label.to(device).long() bbox = bbox.to(device) landmark = landmark.to(device) class_out, bbox_out, landmark_out = model(img) cls_loss = class_loss(class_out, label) box_loss = bbox_loss(bbox_out, bbox, label) landmarks_loss = landmark_loss(landmark_out, landmark, label) total_loss = radio_cls_loss * cls_loss + radio_bbox_loss * box_loss + radio_landmark_loss * landmarks_loss optimizer.zero_grad() total_loss.backward() optimizer.step() if batch_id % 100 == 0: acc = accuracy(class_out, label) print('[%s] Train epoch %d, batch %d, total_loss: %f, cls_loss: %f, box_loss: %f, landmarks_loss: %f, ' 'accuracy:%f' % (datetime.now(), epoch, batch_id, total_loss, cls_loss, box_loss, landmarks_loss, acc)) scheduler.step()我想绘制cls_loss, box_loss, landmarks_loss, acc随自变量变化的图像,那自变量选什么比较合适,帮我修改成完整的代码
自变量应该选取 epoch,因为这是训练的迭代次数。下面是修改后的完整代码:
```python
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
# define your train_loader, model, optimizer, scheduler, etc.
# define the lists to store the training statistics
train_losses = []
train_cls_losses = []
train_box_losses = []
train_landmarks_losses = []
train_accs = []
epoch_num = 10
radio_cls_loss = 1.0
radio_bbox_loss = 1.0
radio_landmark_loss = 1.0
device = 'cuda' if torch.cuda.is_available() else 'cpu'
for epoch in range(epoch_num):
for batch_id, (img, label, bbox, landmark) in enumerate(train_loader):
img = img.to(device)
label = label.to(device).long()
bbox = bbox.to(device)
landmark = landmark.to(device)
class_out, bbox_out, landmark_out = model(img)
cls_loss = class_loss(class_out, label)
box_loss = bbox_loss(bbox_out, bbox, label)
landmarks_loss = landmark_loss(landmark_out, landmark, label)
total_loss = radio_cls_loss * cls_loss + radio_bbox_loss * box_loss + radio_landmark_loss * landmarks_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
if batch_id % 100 == 0:
acc = accuracy(class_out, label)
print('[%s] Train epoch %d, batch %d, total_loss: %f, cls_loss: %f, box_loss: %f, landmarks_loss: %f, '
'accuracy:%f' % (datetime.now(), epoch, batch_id, total_loss, cls_loss, box_loss, landmarks_loss, acc))
# append the training statistics to the lists
train_losses.append(total_loss.item())
train_cls_losses.append(cls_loss.item())
train_box_losses.append(box_loss.item())
train_landmarks_losses.append(landmarks_loss.item())
train_accs.append(acc.item())
scheduler.step()
# plot the training statistics
x = np.arange(epoch_num)
plt.plot(x, train_losses, label='total_loss')
plt.plot(x, train_cls_losses, label='cls_loss')
plt.plot(x, train_box_losses, label='box_loss')
plt.plot(x, train_landmarks_losses, label='landmarks_loss')
plt.plot(x, train_accs, label='accuracy')
plt.legend()
plt.show()
```
我想让MTCNN代码运行后输出准确率折线图该怎样修改代码for epoch in range(epoch_num): for batch_id, (img, label, bbox, landmark) in enumerate(train_loader): img = img.to(device) label = label.to(device).long() bbox = bbox.to(device) landmark = landmark.to(device) class_out, bbox_out, landmark_out = model(img) cls_loss = class_loss(class_out, label) box_loss = bbox_loss(bbox_out, bbox, label) landmarks_loss = landmark_loss(landmark_out, landmark, label) total_loss = radio_cls_loss * cls_loss + radio_bbox_loss * box_loss + radio_landmark_loss * landmarks_loss optimizer.zero_grad() total_loss.backward() optimizer.step() if batch_id % 100 == 0: acc = accuracy(class_out, label) print('[%s] Train epoch %d, batch %d, total_loss: %f, cls_loss: %f, box_loss: %f, landmarks_loss: %f, ' 'accuracy:%f' % (datetime.now(), epoch, batch_id, total_loss, cls_loss, box_loss, landmarks_loss, acc)) scheduler.step()
要在 MTCNN 代码运行后输出准确率折线图,可以使用 Matplotlib 库绘制折线图,并在训练过程中保存每个 epoch 的准确率和损失值,最后将其绘制成折线图。
具体来说,可以按照以下步骤进行修改:
1. 在代码开头引入 Matplotlib 库,并定义一个空列表来保存每个 epoch 的准确率和损失值,例如:
```
import matplotlib.pyplot as plt
epoch_acc = []
epoch_loss = []
```
2. 在训练过程中,在每个 epoch 结束后计算当前 epoch 的准确率和损失值,并将其添加到列表中,例如:
```
if batch_id % 100 == 0:
acc = accuracy(class_out, label)
epoch_acc.append(acc)
epoch_loss.append(total_loss)
print('[%s] Train epoch %d, batch %d, total_loss: %f, cls_loss: %f, box_loss: %f, landmarks_loss: %f, '
'accuracy:%f' % (datetime.now(), epoch, batch_id, total_loss, cls_loss, box_loss, landmarks_loss, acc))
```
3. 在训练结束后,使用 Matplotlib 库绘制准确率和损失值的折线图,例如:
```
plt.plot(range(1, epoch_num + 1), epoch_acc, label='Accuracy')
plt.plot(range(1, epoch_num + 1), epoch_loss, label='Loss')
plt.xlabel('Epoch')
plt.legend()
plt.show()
```
这样,就可以在训练过程中保存准确率和损失值,并最终将其绘制成折线图。需要注意的是,Matplotlib 库需要单独安装,并且在绘图前需要先将数据转化为 NumPy 数组。
阅读全文
相关推荐
















