代码解释# Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Write results for *xyxy, conf, cls in det: if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file: file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) if label is not None: if (label.split())[0] == 'person': people_coords.append(xyxy) # plot_one_box(xyxy, im0, line_thickness=3) plot_dots_on_people(xyxy, im0) # Plot lines connecting people distancing(people_coords, im0, dist_thres_lim=(100, 150)) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if 1: ui.showimg(im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) vid_writer.write(im0)
时间: 2023-06-15 12:04:11 浏览: 220
这段代码是目标检测算法的输出结果处理部分。主要包括以下几个步骤:
1. 对每张图片的检测结果进行处理,包括将检测框从输入图像的尺寸缩放到输出图像的尺寸,并将结果写入文本文件中。
2. 对每个类别的检测结果统计数量,并将数量和类别名称添加到输出字符串中。
3. 对每个检测到的目标绘制边界框,并在边界框上标注类别和置信度。
4. 如果检测到的目标是人,则将其坐标保存在列表中,并在图像上绘制点和连线进行社交距离监测。
5. 将处理后的图像展示出来,并将图像保存到文件中。
相关问题
解释 for i, det in enumerate(pred): # detections per image 遍历一个batch中的每个图片 if webcam: # batch_size >= 1 p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count else: p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
这段代码的作用是遍历模型输出的预测结果,并对每个预测框进行处理。
`pred` 是模型输出的预测框信息张量,其中包含了经过 NMS 处理后的预测框信息。这段代码使用 `enumerate()` 函数遍历了 `pred` 中的每个元素,即每个预测框。
`if webcam:` 语句判断当前是否为实时视频流处理模式。如果是实时视频流处理模式,则表示 `pred` 中包含了多个图像的预测结果,需要逐个处理。具体地,`p, s, im0, frame` 分别表示当前预测框所属的图像路径、标注信息、原始图像张量和图像计数器。
如果不是实时视频流处理模式,则表示 `pred` 中仅包含一个图像的预测结果,因此 `p, s, im0, frame` 直接赋值为图像路径、标注信息、原始图像张量和图像计数器。
在接下来的代码中,将对每个预测框进行处理和可视化。
n = (pred[:, -1] == c).type(torch.int).sum() # detections per class
这里的代码是统计预测结果中每个类别 c 的检测数目 n。具体来说,`pred[:, -1]` 表示预测结果中每个检测框所属的类别,`pred[:, -1] == c` 表示找出属于类别 c 的所有检测框,然后将其转换成 int 类型的 tensor,统计其中 True 的个数即为类别 c 的检测数目 n。
最后,这个代码段的目的可能是为了评估目标检测模型在每个类别上的检测表现,可以根据检测数目 n 和真实标签中类别 c 的目标数目来计算召回率等指标。
阅读全文