PolygonZone 类中只有def trigger(self, detections: Detections) -> np.ndarray: """ Determines if the detections are within the polygon zone. Parameters: detections (Detections): The detections to be checked against the polygon zone Returns: np.ndarray: A boolean numpy array indicating if each detection is within the polygon zone """ clipped_xyxy = clip_boxes( boxes_xyxy=detections.xyxy, frame_resolution_wh=self.frame_resolution_wh ) clipped_detections = replace(detections, xyxy=clipped_xyxy) clipped_anchors = np.ceil( clipped_detections.get_anchor_coordinates(anchor=self.triggering_position) ).astype(int) is_in_zone = self.mask[clipped_anchors[:, 1], clipped_anchors[:, 0]] self.current_count = np.sum(is_in_zone) return is_in_zone.astype(bool)这个方法

时间: 2024-04-21 19:23:55 浏览: 21
根据您提供的代码,`PolygonZone` 类中只有一个名 `trigger` 的方法。该方法用于确定传入的检测结果是否位于多边形区域内。 在这个方法中,首先通过调用 `clip_boxes` 函数对检测结果的坐标进行裁剪,以适应帧的分辨率。然后,使用 `replace` 函数将裁剪后的坐标替换原始的检测结果。 接下来,通过调用 `clipped_detections.get_anchor_coordinates` 方法获取裁剪后的检测结果的锚点(anchor)坐标,并进行向上取整和类型转换。然后,使用这些锚点坐标在 `mask` 属性中进行索引操作,得到一个布尔类型的数组 `is_in_zone`,表示每个检测结果是否在多边形区域内。 最后,通过对 `is_in_zone` 数组求和,更新 `current_count` 属性,并将 `is_in_zone` 转换为布尔类型的数组返回。 请注意,上述代码中引用的 `clip_boxes`、`replace` 和 `get_anchor_coordinates` 函数以及 `mask` 属性的实现没有给出。您需要根据具体需求实现或导入这些函数和属性,并根据需要进行调整。
相关问题

def trigger(self, detections: Detections) -> np.ndarray: """ Determines if the detections are within the polygon zone. Parameters: detections (Detections): The detections to be checked against the polygon zone Returns: np.ndarray: A boolean numpy array indicating if each detection is within the polygon zone """ clipped_xyxy = clip_boxes( boxes_xyxy=detections.xyxy, frame_resolution_wh=self.frame_resolution_wh ) clipped_detections = replace(detections, xyxy=clipped_xyxy) clipped_anchors = np.ceil( clipped_detections.get_anchor_coordinates(anchor=self.triggering_position) ).astype(int) is_in_zone = self.mask[clipped_anchors[:, 1], clipped_anchors[:, 0]] self.current_count = np.sum(is_in_zone) return is_in_zone.astype(bool)

这是一个名为 `trigger` 的方法,用于确定检测结果是否位于多边形区域内。 该方法接受一个 `Detections` 对象作为参数,该对象包含了待检测的结果。在方法中,首先通过 `clip_boxes` 函数对检测结果的边界框进行裁剪,以确保其不超出帧的分辨率。然后,使用 `replace` 函数将裁剪后的边界框应用到 `detections` 对象中。 接下来,使用 `get_anchor_coordinates` 方法获取裁剪后的边界框的锚点坐标,并将其取整为最接近的整数,并将其设置为 `clipped_anchors`。 然后,通过使用 `self.mask` 和 `clipped_anchors`,获取每个锚点坐标是否位于多边形区域内的布尔值,并将结果保存在 `is_in_zone` 中。 最后,通过使用 `np.sum` 统计位于多边形区域内的锚点的数量,并将其保存在 `self.current_count` 中。最后,将 `is_in_zone` 转换为布尔类型并返回。 请注意,上述代码中使用的函数和类,如 `clip_boxes`、`replace`、`Detections` 等,都没有给出具体实现。您需要根据您的需求自行实现或导入这些函数和类。 以下是代码示例: ```python import numpy as np class PolygonZone: def trigger(self, detections: Detections) -> np.ndarray: # 裁剪边界框 clipped_xyxy = clip_boxes( boxes_xyxy=detections.xyxy, frame_resolution_wh=self.frame_resolution_wh ) clipped_detections = replace(detections, xyxy=clipped_xyxy) # 获取锚点坐标 clipped_anchors = np.ceil( clipped_detections.get_anchor_coordinates(anchor=self.triggering_position) ).astype(int) # 检测是否位于多边形区域内 is_in_zone = self.mask[clipped_anchors[:, 1], clipped_anchors[:, 0]] # 统计位于多边形区域内的数量 self.current_count = np.sum(is_in_zone) return is_in_zone.astype(bool) ``` 请根据您的需求实现或导入缺失的函数和类,并根据具体情况进行调整。

// Update Kalman Filters state for(int i=0;i<assignment.size();i++) { // If track updated less than one time, than filter state is not correct. tracks[i]->KF->GetPrediction(); if(assignment[i] >= 0 && assignment[i] < M) // If we have assigned detect, then update using its coordinates, { tracks[i]->skipped_frames=0; tracks[i]->prediction=tracks[i]->KF->Update(detections[assignment[i]], 1); } else // if not continue using predictions { tracks[i]->prediction=tracks[i]->KF->Update(Point2f(0,0),0); } if(tracks[i]->trace.size()>max_trace_length) { tracks[i]->trace.erase(tracks[i]->trace.begin(),tracks[i]->trace.end()-max_trace_length); } tracks[i]->trace.push_back(tracks[i]->prediction); tracks[i]->KF->LastResult=tracks[i]->prediction; } }

这段代码是针对多目标跟踪中的卡尔曼滤波器进行状态更新的。首先,对于每一个跟踪器,我们使用卡尔曼滤波器进行预测。然后,如果该跟踪器已经与某个检测结果进行了匹配,则使用该检测结果的坐标进行更新。如果没有匹配,则继续使用预测的结果。最后,将该跟踪器的预测结果添加到其轨迹中,同时将轨迹长度进行限制,避免占用过多内存。

相关推荐

最新推荐

recommend-type

基于go开发的waf,包括网关和WAF两部分;.zip

Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
recommend-type

基于mgo风格封装mongodb-go官方驱动.zip

Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用

![MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用](https://img-blog.csdnimg.cn/2020050917173284.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thbmdqaWVsZWFybmluZw==,size_16,color_FFFFFF,t_70) # 1. MATLAB取整函数概述** MATLAB取整函数是一组强大的工具,用于对数值进行
recommend-type

我想做python的算法工程师,我应该学什么?学习的顺序是什么?网上有什么推荐的免费课程吗?回答具体精确一点不要太笼统

对于想要成为 Python 算法工程师的人来说,他们应该先从掌握 Python 的基础语法开始,然后学习数据结构和算法,并且要深入了解 Python 中的一些科学计算和数据处理库,比如 NumPy、Pandas 等。 学习的顺序可以是先学习基础语法和编程技巧,然后再学习数据结构和算法相关的知识,最后深入了解数据处理和科学计算相关的库。 对于免费课程的推荐,我建议你可以先去 Coursera、edX、Udacity 等网站上寻找相关课程,这些网站上有很多优质的 Python 编程和算法课程,你可以根据自己的需求和学习进度进行选择。此外,还可以考虑一些在线编程网站,如 HackerRank、L
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB取整函数与数据分析的应用:round、fix、floor、ceil在数据分析中的应用

![MATLAB取整函数与数据分析的应用:round、fix、floor、ceil在数据分析中的应用](https://img-blog.csdnimg.cn/img_convert/a12c695f8b68033fc45008ede036b653.png) # 1. MATLAB取整函数概述 MATLAB提供了一系列取整函数,用于对数值进行四舍五入或截断操作。这些函数包括: - `round`:四舍五入到最接近的整数 - `floor`:向下取整到最小的整数 - `ceil`:向上取整到最大的整数 - `fix`:截断小数部分,返回整数部分 这些函数在数据分析、可视化和特定领域(如金融
recommend-type

r语言如何调用split函数按照factor分开后得到的dataframe

可以使用如下语句: split_dataframe <- split(original_dataframe, original_dataframe$factor_column) 其中,original_dataframe为待拆分的原始数据框,$factor_column为按照哪一列分组(即因子列),split_dataframe为拆分后得到的数据框列表。