import pandas as pd import matplotlib.pyplot as plt # 读取 CSV 文件并转换为 DataFrame 对象 df = pd.read_csv('pyechart.csv') data = df.values # 绘制热力图 plt.imshow(data, cmap='coolwarm') # 设置x轴和y轴标签 plt.xlabel('City') plt.ylabel('City') plt.xticks(range(0, len(df.columns), 2)) plt.yticks(range(0, len(df), 2)) # 显示颜色条 plt.colorbar() plt.title("The shortest time between city") # 显示图像 plt.show() # 打印 DataFrame 对象怎么让y轴的取向相反
时间: 2024-03-22 15:38:30 浏览: 140
您可以使用 `plt.gca().invert_yaxis()` 函数来让 y 轴的取向相反。例如,如果您想要让 y 轴从上往下排列,可以将代码修改为以下内容:
```
import pandas as pd
import matplotlib.pyplot as plt
# 读取 CSV 文件并转换为 DataFrame 对象
df = pd.read_csv('pyechart.csv')
data = df.values
# 绘制热力图
plt.imshow(data, cmap='coolwarm')
# 设置 x 轴和 y 轴标签
plt.xlabel('City')
plt.ylabel('City')
# 指定 x 轴和 y 轴坐标取值间隔
plt.xticks(range(0, len(df.columns), 2))
plt.yticks(range(0, len(df), 2))
# 反转 y 轴
plt.gca().invert_yaxis()
# 显示颜色条
plt.colorbar()
# 指定图名
plt.title("The shortest time between city")
# 显示图像
plt.show()
# 打印 DataFrame 对象
print(df)
```
请注意,在这个例子中,我们在设置完 y 轴坐标取值间隔后,使用了 `plt.gca().invert_yaxis()` 函数来反转 y 轴。
相关问题
import pandas as pd import matplotlib.pyplot as plt # 读取 CSV 文件并转换为 DataFrame 对象 df = pd.read_csv('pyechart.csv') data = df.values # 绘制热力图 plt.imshow(data, cmap='coolwarm') # 设置x轴和y轴标签 plt.xlabel('Point Index') plt.ylabel('Point Index') # 显示颜色条 plt.colorbar() # 显示图像 plt.show() # 打印 DataFrame 对象修改代码指定图名
您可以使用 `plt.title()` 函数来指定图名,修改后的代码如下所示:
```
import pandas as pd
import matplotlib.pyplot as plt
# 读取 CSV 文件并转换为 DataFrame 对象
df = pd.read_csv('pyechart.csv')
data = df.values
# 绘制热力图
plt.imshow(data, cmap='coolwarm')
# 设置 x 轴和 y 轴标签
plt.xlabel('Point Index')
plt.ylabel('Point Index')
# 显示颜色条
plt.colorbar()
# 指定图名
plt.title('Heatmap of Pyechart')
# 显示图像
plt.show()
# 打印 DataFrame 对象
print(df)
```
请注意,您需要将 `Heatmap of Pyechart` 替换成您想要的图名。
import numpy as np import scipy.stats as ss import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df=pd.read_excel("./tmp_apply3.xlsx")读入后怎么取字段
你可以使用 Pandas 的 `loc` 或 `iloc` 方法来取出 DataFrame 中的特定字段。具体而言,`loc` 方法可以通过列名来取出字段,而 `iloc` 方法可以通过列的索引来取出字段。以下是两种方法的示例:
假设你要取出 `df` 中的 `sale` 和 `date` 两个字段,其中 `sale` 字段在第 2 列,`date` 字段在第 3 列,你可以这样做:
使用 `loc` 方法:
```python
# 通过列名取出字段
df_new = df.loc[:, ["sale", "date"]]
```
使用 `iloc` 方法:
```python
# 通过列的索引取出字段
df_new = df.iloc[:, [1, 2]]
```
上述代码中,`df_new` 就是取出 `df` 中的 `sale` 和 `date` 两个字段后得到的新 DataFrame。其中 `:` 表示取出所有行,`["sale", "date"]` 或 `[1, 2]` 表示取出第 2 列和第 3 列。你可以根据实际需要修改这些代码。
阅读全文