label_pre = np.argmax(y_pre, axis=1)

时间: 2024-01-05 13:02:23 浏览: 25
这段代码的作用是将神经网络的输出 y_pre 转换为对应的类别标签。其中,np.argmax() 函数的作用是返回数组中最大值的索引,axis=1 表示在每行中查找最大值的索引。由于 y_pre 是一个二维数组,每行表示一个样本在各个类别上的置信度,因此对 y_pre 沿着行的方向进行 np.argmax() 操作即可得到每个样本的预测标签。最终得到的 label_pre 是一个一维数组,包含了所有样本的预测标签。
相关问题

for e in range(6001): y_pre = model(xs[:90,:]) _,target = t.max(ys[:90,:],1) loss = model.criter(y_pre,target) # 这里的target一定是label ,不是onehot编码 if(e%200==0): print(e,loss.data) # Zero gradients model.opt.zero_grad() # perform backward pass loss.backward() # update weights model.opt.step() result = (np.argmax(model(xs[90:,:]).data.numpy(),axis=1) == np.argmax(ys[90:,:].data.numpy(),axis=1))

这段代码是一个训练循环,用于训练模型并输出损失值。具体来说,它的主要步骤如下: 1. 对模型进行多次迭代训练,迭代次数为 6000 次。 2. 在每个迭代步骤中,使用模型对前 90 个样本进行预测,并将预测结果与实际标签(target)进行比较,计算损失值(loss)。 3. 每隔 200 次迭代输出一次损失值。 4. 对损失值进行反向传播(backward pass)和权重更新(update weights)的操作。 5. 最后,使用训练好的模型对剩余的样本进行预测,并将预测结果与实际标签进行比较,得到最终的准确率(result)。 需要注意的是,在这段代码中,target 是实际标签,而不是 onehot 编码。同时,该模型使用了一个优化器(optimizer),通过对损失值进行反向传播和权重更新,来实现模型的训练。

def test_mobilenet(): # todo 加载数据, 224*224的大小 模型一次训练16张图片 train_ds, test_ds, class_names = data_load(r"C:\Users\wjx\Desktop\项目\data\flower_photos_split\train", r"C:\Users\wjx\Desktop\项目\data\flower_photos_split\test", 224, 224, 16) # todo 加载模型 model = tf.keras.models.load_model("models/mobilenet_fv.h5") # model.summary() # 测试,evaluate的输出结果是验证集的损失值和准确率 loss, accuracy = model.evaluate(test_ds) # 输出结果 print('Mobilenet test accuracy :', accuracy) test_real_labels = [] test_pre_labels = [] for test_batch_images, test_batch_labels in test_ds: test_batch_labels = test_batch_labels.numpy() test_batch_pres = model.predict(test_batch_images) # print(test_batch_pres) test_batch_labels_max = np.argmax(test_batch_labels, axis=1) test_batch_pres_max = np.argmax(test_batch_pres, axis=1) # print(test_batch_labels_max) # print(test_batch_pres_max) # 将推理对应的标签取出 for i in test_batch_labels_max: test_real_labels.append(i) for i in test_batch_pres_max: test_pre_labels.append(i) # break # print(test_real_labels) # print(test_pre_labels) class_names_length = len(class_names) heat_maps = np.zeros((class_names_length, class_names_length)) for test_real_label, test_pre_label in zip(test_real_labels, test_pre_labels): heat_maps[test_real_label][test_pre_label] = heat_maps[test_real_label][test_pre_label] + 1 print(heat_maps) heat_maps_sum = np.sum(heat_maps, axis=1).reshape(-1, 1) # print(heat_maps_sum) print() heat_maps_float = heat_maps / heat_maps_sum print(heat_maps_float) # title, x_labels, y_labels, harvest show_heatmaps(title="heatmap", x_labels=class_names, y_labels=class_names, harvest=heat_maps_float, save_name="images/heatmap_mobilenet.png")

这段代码是用来测试 Mobilenet 模型在花卉数据集上的表现的。首先,使用 `data_load` 函数加载数据集,然后使用 `tf.keras.models.load_model` 函数加载预训练好的 Mobilenet 模型。接着,使用 `model.evaluate` 函数对测试集进行评估,得到测试集的损失值和准确率。然后,依次对测试集中的每一批数据进行预测,将真实标签和预测标签分别存储在两个列表中。最后,使用这两个列表生成混淆矩阵,并将混淆矩阵可视化为热力图。

相关推荐

x_train = train.drop(['id','label'], axis=1) y_train = train['label'] x_test=test.drop(['id'], axis=1) def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=sum(sum(abs(y_pre-y_tru))) return loss def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test def lgb_model(x_train, y_train, x_test): lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb") return lgb_test lgb_test = lgb_model(x_train, y_train, x_test) 这段代码运用了什么学习模型

#importing required libraries from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, Dropout, LSTM #setting index data = df.sort_index(ascending=True, axis=0) new_data = data[['trade_date', 'close']] new_data.index = new_data['trade_date'] new_data.drop('trade_date', axis=1, inplace=True) new_data.head() #creating train and test sets dataset = new_data.values train= dataset[0:1825,:] valid = dataset[1825:,:] #converting dataset into x_train and y_train scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) x_train, y_train = [], [] for i in range(60,len(train)): x_train.append(scaled_data[i-60:i,0]) y_train.append(scaled_data[i,0]) x_train, y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],1)) # create and fit the LSTM network model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1],1))) model.add(LSTM(units=50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(x_train, y_train, epochs=1, batch_size=1, verbose=1) #predicting 246 values, using past 60 from the train data inputs = new_data[len(new_data) - len(valid) - 60:].values inputs = inputs.reshape(-1,1) inputs = scaler.transform(inputs) X_test = [] for i in range(60,inputs.shape[0]): X_test.append(inputs[i-60:i,0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0],X_test.shape[1],1)) closing_price = model.predict(X_test) closing_price1 = scaler.inverse_transform(closing_price) rms=np.sqrt(np.mean(np.power((valid-closing_price1),2))) rms #v=new_data[1825:] valid1 = pd.DataFrame() # 假设你使用的是Pandas DataFrame valid1['Pre_Lstm'] = closing_price1 train=new_data[:1825] plt.figure(figsize=(16,8)) plt.plot(train['close']) plt.plot(valid1['close'],label='真实值') plt.plot(valid1['Pre_Lstm'],label='预测值') plt.title('LSTM预测',fontsize=16) plt.xlabel('日期',fontsize=14) plt.ylabel('收盘价',fontsize=14) plt.legend(loc=0)

import pandas as pd data = pd.read_csv(C:\Users\Administrator\Desktop\pythonsjwj\weibo_senti_100k.csv') data = data.dropna(); data.shape data.head() import jieba data['data_cut'] = data['review'].apply(lambda x: list(jieba.cut(x))) data.head() with open('stopword.txt','r',encoding = 'utf-8') as f: stop = f.readlines() import re stop = [re.sub(' |\n|\ufeff','',r) for r in stop] data['data_after'] = [[i for i in s if i not in stop] for s in data['data_cut']] data.head() w = [] for i in data['data_after']: w.extend(i) num_data = pd.DataFrame(pd.Series(w).value_counts()) num_data['id'] = list(range(1,len(num_data)+1)) a = lambda x:list(num_data['id'][x]) data['vec'] = data['data_after'].apply(a) data.head() from wordcloud import WordCloud import matplotlib.pyplot as plt num_words = [''.join(i) for i in data['data_after']] num_words = ''.join(num_words) num_words= re.sub(' ','',num_words) num = pd.Series(jieba.lcut(num_words)).value_counts() wc_pic = WordCloud(background_color='white',font_path=r'C:\Windows\Fonts\simhei.ttf').fit_words(num) plt.figure(figsize=(10,10)) plt.imshow(wc_pic) plt.axis('off') plt.show() from sklearn.model_selection import train_test_split from keras.preprocessing import sequence maxlen = 128 vec_data = list(sequence.pad_sequences(data['vec'],maxlen=maxlen)) x,xt,y,yt = train_test_split(vec_data,data['label'],test_size = 0.2,random_state = 123) import numpy as np x = np.array(list(x)) y = np.array(list(y)) xt = np.array(list(xt)) yt = np.array(list(yt)) x=x[:2000,:] y=y[:2000] xt=xt[:500,:] yt=yt[:500] from sklearn.svm import SVC clf = SVC(C=1, kernel = 'linear') clf.fit(x,y) from sklearn.metrics import classification_report test_pre = clf.predict(xt) report = classification_report(yt,test_pre) print(report) from keras.optimizers import SGD, RMSprop, Adagrad from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM, GRU model = Sequential() model.add(Embedding(len(num_data['id'])+1,256)) model.add(Dense(32, activation='sigmoid', input_dim=100)) model.add(LSTM(128)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.summary() import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.utils import plot_model plot_model(model,to_file='Lstm2.png',show_shapes=True) ls = mpimg.imread('Lstm2.png') plt.imshow(ls) plt.axis('off') plt.show() model.compile(loss='binary_crossentropy',optimizer='Adam',metrics=["accuracy"]) model.fit(x,y,validation_data=(x,y),epochs=15)

最新推荐

recommend-type

node-v18.18.2-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v7.7.3-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

使用C#,生成特定格式Word文档

Word文档的自动化生成,可以根据数据自动形成文档
recommend-type

JavaScript_简单的动画为您的顺风项目.zip

JavaScript
recommend-type

node-v10.10.0-headers.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。