建立一个简单的DANN模型
时间: 2023-06-24 12:03:03 浏览: 156
DANN是一种用于域自适应的深度学习模型。它可以在不同的领域之间进行迁移学习,从而提高模型的泛化能力。下面是一个简单的DANN模型示例,该模型包括一个特征提取器和一个领域分类器。
首先,导入必要的深度学习库和数据集:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
```
接下来,定义一个特征提取器和领域分类器,并将它们组合在一起形成DANN模型:
```python
class FeatureExtractor(nn.Module):
def __init__(self):
super(FeatureExtractor, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5)
self.relu1 = nn.ReLU()
self.maxpool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5)
self.relu2 = nn.ReLU()
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(in_features=128*4*4, out_features=1024)
self.relu3 = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.maxpool2(x)
x = x.view(-1, 128*4*4)
x = self.fc1(x)
x = self.relu3(x)
return x
class DomainClassifier(nn.Module):
def __init__(self):
super(DomainClassifier, self).__init__()
self.fc1 = nn.Linear(in_features=1024, out_features=128)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(in_features=128, out_features=1)
def forward(self, x):
x = self.fc1(x)
x = self.relu1(x)
x = self.fc2(x)
return x
class DANN(nn.Module):
def __init__(self):
super(DANN, self).__init__()
self.feature_extractor = FeatureExtractor()
self.domain_classifier = DomainClassifier()
def forward(self, x, alpha):
features = self.feature_extractor(x)
domain_logits = self.domain_classifier(features)
return domain_logits
```
在上面的代码中,FeatureExtractor是我们的特征提取器,它由两个卷积层和一个全连接层组成。DomainClassifier是我们的领域分类器,它由两个全连接层组成。DANN模型将特征提取器和领域分类器组合在一起,使用alpha参数控制不同领域之间的相似性。在此示例中,我们只使用领域分类器,因为DANN模型中还需要进行域分类预测。
接下来,我们需要定义域分类的损失函数和优化器:
```python
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(dann.parameters(), lr=0.001)
```
在训练过程中,我们需要根据不同领域的数据进行特征提取和分类预测,并计算域分类损失,最后根据总损失更新模型参数:
```python
for epoch in range(num_epochs):
for i, (source_data, source_labels) in enumerate(source_loader):
# domain labels: 0 for source domain, 1 for target domain
source_domain_labels = torch.zeros(len(source_data))
target_domain_labels = torch.ones(len(target_data))
# concatenate source and target data
data = torch.cat((source_data, target_data), dim=0)
domain_labels = torch.cat((source_domain_labels, target_domain_labels), dim=0)
# shuffle the data
shuffle_indices = torch.randperm(len(data))
data = data[shuffle_indices]
domain_labels = domain_labels[shuffle_indices]
optimizer.zero_grad()
# calculate domain classification loss
features = dann.feature_extractor(data)
domain_logits = dann.domain_classifier(features)
domain_loss = criterion(domain_logits.squeeze(), domain_labels)
# update model parameters
loss = domain_loss
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Iteration [{}/{}], Domain Loss: {:.4f}'.format(
epoch+1, num_epochs, i+1, len(source_loader), domain_loss.item()))
```
在上面的代码中,我们首先将源域和目标域的数据和域标签合并在一起,然后随机打乱数据顺序,接着计算域分类损失并更新模型参数。在训练过程中,我们可以看到域损失不断下降,表明我们的模型正在学习如何区分不同领域的数据。
最后,我们可以使用训练好的DANN模型进行预测:
```python
# switch to evaluation mode
dann.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
features = dann.feature_extractor(images)
outputs = dann.domain_classifier(features)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: {:.2f}%'.format(100 * correct / total))
```
在上面的代码中,我们使用测试集对模型进行评估,并计算其准确率。
阅读全文