model_root=<MODEL_ROOT> data_path=<DATA_PATH> output_dir=<OUTPUT_DIR> # vtab-structured: dmlab # base_lr = 1.0 # lr = base_lr / 256 * cfg.DATA.BATCH_SIZE for seed in "42" "44" "82" "100" "800"; do python train.py \ --config-file configs/prompt/cub.yaml \ MODEL.TYPE "vit" \ DATA.BATCH_SIZE "64" \ MODEL.PROMPT.NUM_TOKENS "100" \ MODEL.PROMPT.DEEP "True" \ MODEL.PROMPT.DROPOUT "0.1" \ DATA.FEATURE "sup_vitb16_imagenet21k" \ DATA.NAME "vtab-dmlab" \ DATA.NUMBER_CLASSES "6" \ SOLVER.BASE_LR "0.25" \ SOLVER.WEIGHT_DECAY "0.001" \ SEED ${seed} \ MODEL.MODEL_ROOT "${model_root}" \ DATA.DATAPATH "${data_path}" \ OUTPUT_DIR "${output_dir}/seed${seed}" done
时间: 2023-06-25 19:02:57 浏览: 215
matlab.rar_Okumura model_hata_it_okumura_pathloss
这是一个训练模型的脚本,使用了 Vit 模型,数据集是 vtab-dmlab,使用了 configs/prompt/cub.yaml 配置文件。其中,每个种子(seed)都会进行一次训练,共训练了5次。其他参数包括 BATCH_SIZE,NUM_TOKENS,DEEP,DROPOUT,FEATURE,NUMBER_CLASSES,BASE_LR,WEIGHT_DECAY 等等。该脚本的作用是训练出一个能够对 vtab-dmlab 数据集进行分类的模型。
阅读全文