我的最后一层是一个线性层加上sigmoid,我想对线性层dropout,怎么加
时间: 2024-03-14 16:45:39 浏览: 120
你可以在线性层之后添加一个Dropout层,然后再把结果传递给Sigmoid函数。具体实现方法如下:
```
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.linear_layer = nn.Linear(in_features=100, out_features=50)
self.dropout_layer = nn.Dropout(p=0.5)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.linear_layer(x)
x = self.dropout_layer(x)
x = self.sigmoid(x)
return x
```
在这个例子中,我们先定义了一个线性层和一个Dropout层,然后在forward()方法中,首先将输入数据传递给线性层,然后将结果传递给Dropout层,最后将结果传递给Sigmoid函数。这样可以在保持最后一层是Sigmoid的情况下,对线性层使用Dropout技术。
相关问题
dropout层和激活函数层是什么
dropout层是一种在神经网络中用于防止过拟合的技术,它在训练过程中随机丢弃一些神经元,从而减少神经元之间的依赖性,提高模型的泛化能力。激活函数层是一种用于引入非线性变换的技术,它将神经元的输入转换为输出,从而使神经网络能够学习更加复杂的模式。常见的激活函数包括sigmoid、ReLU、tanh等。
class LSTMNet(torch.nn.Module): def __init__(self, num_hiddens, num_outputs): super(LSTMNet, self).__init__() #nn.Conv1d(1,16,2), #nn.Sigmoid(), # nn.MaxPool1d(2), #nn.Conv1d(1,32,2), self.hidden_size = num_hiddens # RNN 层,这里的 batch_first 指定传入的是 (批大小,序列长度,序列每个位置的大小) # 如果不指定其为 True,传入顺序应当是 (序列长度,批大小,序列每个位置的大小) input_size= num_inputs.view(len(input_x), 1, -1)//24 self.rnn = torch.nn.LSTM(input_size, hidden_size=num_hiddens,batch_first=True) # 线性层 self.dense = torch.nn.Linear(self.hidden_size*24, 256) self.dense2 = torch.nn.Linear(256,num_outputs) # dropout 层,这里的参数指 dropout 的概率 self.dropout = torch.nn.Dropout(0.3) self.dropout2 = torch.nn.Dropout(0.5) # ReLU 层 self.relu = torch.nn.ReLU() # 前向传播函数,这是一个拼接的过程,使用大量变量是为了避免混淆,不做过多讲解 def forward(self, x): # x shape: (batch_size, 24, 307) # LSTM 层会传出其参数,这里用 _ 将其舍弃 h, _ = self.rnn(x) # LSTM 层会传出 (batch_size, 24, num_hiddens) 个参数,故需要 reshape 后丢入全连接层 h_r = h.reshape(-1,self.hidden_size*24) h_d = self.dropout(h_r) y = self.dense(h_d) drop_y = self.dropout2(y) a = self.relu(drop_y) y2 = self.dense2(a) return y2
这是一个使用LSTM网络进行序列预测的模型,输入是一个形状为(batch_size, 24, 307)的张量。在模型的初始化方法中,定义了LSTM层、线性层、dropout层和ReLU层。在前向传播方法中,首先将输入张量传入LSTM层得到输出h,然后将h重新reshape成形状为(batch_size, num_hiddens*24)的张量,再经过线性层、dropout层和ReLU层得到最终的预测结果y2。
阅读全文