知识图谱ComplEX代码实现
时间: 2023-12-05 18:40:51 浏览: 101
根据提供的引用内容,可以了解到知识图谱嵌入方法中的一种常用方法是ComplEX。下面是一个简单的ComplEX代码实现的示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ComplEX(nn.Module):
def __init__(self, num_entities, num_relations, embedding_dim):
super(ComplEX, self).__init__()
self.num_entities = num_entities
self.num_relations = num_relations
self.embedding_dim = embedding_dim
self.entity_embeddings_real = nn.Embedding(num_entities, embedding_dim)
self.entity_embeddings_img = nn.Embedding(num_entities, embedding_dim)
self.relation_embeddings_real = nn.Embedding(num_relations, embedding_dim)
self.relation_embeddings_img = nn.Embedding(num_relations, embedding_dim)
def forward(self, pos_triples, neg_triples):
pos_heads, pos_relations, pos_tails = pos_triples[:, 0], pos_triples[:, 1], pos_triples[:, 2]
neg_heads, neg_relations, neg_tails = neg_triples[:, 0], neg_triples[:, 1], neg_triples[:, 2]
pos_heads_real = self.entity_embeddings_real(pos_heads)
pos_heads_img = self.entity_embeddings_img(pos_heads)
pos_relations_real = self.relation_embeddings_real(pos_relations)
pos_relations_img = self.relation_embeddings_img(pos_relations)
pos_tails_real = self.entity_embeddings_real(pos_tails)
pos_tails_img = self.entity_embeddings_img(pos_tails)
neg_heads_real = self.entity_embeddings_real(neg_heads)
neg_heads_img = self.entity_embeddings_img(neg_heads)
neg_relations_real = self.relation_embeddings_real(neg_relations)
neg_relations_img = self.relation_embeddings_img(neg_relations)
neg_tails_real = self.entity_embeddings_real(neg_tails)
neg_tails_img = self.entity_embeddings_img(neg_tails)
pos_scores = torch.sum(pos_heads_real * pos_relations_real * pos_tails_real, dim=1) + \
torch.sum(pos_heads_img * pos_relations_real * pos_tails_img, dim=1) + \
torch.sum(pos_heads_real * pos_relations_img * pos_tails_img, dim=1) - \
torch.sum(pos_heads_img * pos_relations_img * pos_tails_real, dim=1)
neg_scores = torch.sum(neg_heads_real * neg_relations_real * neg_tails_real, dim=1) + \
torch.sum(neg_heads_img * neg_relations_real * neg_tails_img, dim=1) + \
torch.sum(neg_heads_real * neg_relations_img * neg_tails_img, dim=1) - \
torch.sum(neg_heads_img * neg_relations_img * neg_tails_real, dim=1)
loss = -torch.mean(F.logsigmoid(pos_scores) + F.logsigmoid(-neg_scores))
return loss
```
该代码实现了一个ComplEX模型,其中包括实体和关系的实部和虚部嵌入。模型的输入是正样本三元组和负样本三元组,输出是损失值。在模型的前向传播过程中,首先将正样本和负样本的实体和关系嵌入提取出来,然后计算正样本和负样本的得分,并计算损失值。最终返回损失值。
阅读全文