利用 Torchvision 进行迁移学习 Fastrcnn,给出代码
时间: 2023-03-31 15:02:25 浏览: 132
以下是利用 Torchvision 进行迁移学习 Fastrcnn 的代码示例:
```python
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
# 加载预训练模型
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# 替换分类器
num_classes = 2 # 1 类别 + 背景
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# 加载数据集
dataset = ...
# 定义训练器
trainer = ...
# 训练模型
trainer.train(model, dataset)
```
希望能对你有所帮助!
相关问题
python利用torchvison迁移学习fastrcnn,给出代码
以下是一个简单的 Python 代码示例,用于利用 Torchvision 进行迁移学习 Fastrcnn:
```
import torch
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
# 加载预训练模型
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# 替换分类器
num_classes = 2 # 1 类目标 + 背景
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# 加载数据
dataset = ...
# 训练模型
...
```
希望对你有所帮助!
利用torchvison迁移学习目标检测,给出代码
以下是利用torchvision进行目标检测迁移学习的示例代码:
```python
import torch
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
# 加载预训练模型
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# 替换分类器
num_classes = 2 # 1个背景 + 1个目标类别
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# 加载数据集
dataset = ...
# 定义训练器
data_loader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=utils.collate_fn)
optimizer = torch.optim.SGD(params, lr=.005, momentum=.9, weight_decay=.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=.1)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for images, targets in data_loader:
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
optimizer.zero_grad()
losses.backward()
optimizer.step()
lr_scheduler.step()
```
希望这个示例代码能够帮助你进行目标检测的迁移学习。
阅读全文