pytorch迁移学习时序预测代码
时间: 2024-12-31 22:16:36 浏览: 5
### 使用PyTorch进行时序预测的迁移学习
在时间序列预测领域,迁移学习能够有效提升模型性能,尤其是在目标域数据有限的情况下。通过利用源域的知识,可以在减少新数据需求的同时提高泛化能力。
下面是一个简单的例子,展示如何使用PyTorch实现基于LSTM的时间序列预测迁移学习:
```python
import torch
from torch import nn, optim
from sklearn.preprocessing import MinMaxScaler
import numpy as np
class LSTMModel(nn.Module):
def __init__(self, input_dim=1, hidden_dim=50, output_dim=1, layers=2):
super(LSTMModel, self).__init__()
self.hidden_dim = hidden_dim
self.lstm = nn.LSTM(input_dim, hidden_dim, layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(2, x.size(0), self.hidden_dim).to(x.device)
c0 = torch.zeros(2, x.size(0), self.hidden_dim).to(x.device)
out, _ = self.lstm(x, (h0.detach(), c0.detach()))
out = self.fc(out[:, -1, :])
return out
def prepare_data(data, seq_length=10):
scaler = MinMaxScaler(feature_range=(-1, 1))
data_normalized = scaler.fit_transform(data.reshape(-seq_length-1):
X.append(data_normalized[i:(i+seq_length), 0])
y.append(data_normalized[(i+seq_length), 0])
X = np.array(X)
y = np.array(y)
return torch.tensor(X, dtype=torch.float32).unsqueeze(2), \
torch.tensor(y, dtype=torch.float32)
# 假设source_data和target_data已经准备好
source_X_train, source_y_train = prepare_data(source_data) # 来自源域的数据
target_X_train, target_y_train = prepare_data(target_data) # 来自目标域的数据
model = LSTMModel()
# 首先,在源域上训练模型
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs_source):
model.train()
outputs = model(source_X_train.unsqueeze(0)) # 添加批次维度
optimizer.zero_grad()
loss = criterion(outputs.squeeze(), source_y_train)
loss.backward()
optimizer.step()
# 然后冻结部分层参数并微调于目标域
for param in model.lstm.parameters():
param.requires_grad = False
optimizer_target = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()))
for epoch in range(epochs_target):
model.train()
outputs = model(target_X_train.unsqueeze(0)) # 添加批次维度
optimizer_target.zero_grad()
loss = criterion(outputs.squeeze(), target_y_train)
loss.backward()
optimizer_target.step()
```
此代码展示了如何构建一个基本的LSTM架构,并分两阶段训练:首先是针对大量可用的源域数据进行全面训练;其次是仅调整全连接层权重以适应少量的目标域数据[^1]。
阅读全文