np.ravel的替换代码

时间: 2024-04-14 21:06:55 浏览: 15
如果想要替换 `np.ravel()` 方法,可以使用 `np.ndarray.flatten()` 方法。这两个方法的功能相似,都是将多维数组展平为一维数组。下面是一个示例: ```python import numpy as np # 定义一个二维数组 arr = np.array([[1, 2], [3, 4]]) # 使用 np.ravel() 展平数组 raveled_arr = np.ravel(arr) print(raveled_arr) # [1 2 3 4] # 使用 np.ndarray.flatten() 展平数组 flattened_arr = arr.flatten() print(flattened_arr) # [1 2 3 4] ``` 需要注意的是,`np.ndarray.flatten()` 方法返回的是数组的拷贝,而 `np.ravel()` 方法返回的是数组的视图。如果需要修改展平后的数组,应该使用 `np.ndarray.flatten()` 方法。
相关问题

import cv2 import numpy as np import matplotlib.pyplot as plt gray = cv2.imread('digits.png', 0) digits = [np.hsplit(r, 100) for r in np.vsplit(gray, 50)] # 分解数字:50行,100列 np_digits = np.array(digits) # 转换为numpy数组 # 准备训练数据,转换为二维数组,每个图像400个像素 train_data = np_digits.reshape(-1, 400).astype(np.float32) train_labels = np.repeat(np.arange(10), 500)[:, np.newaxis] # 定义标志 knn = cv2.ml.KNearest_create() # 创建kNN分类器 knn.train(train_data, cv2.ml.ROW_SAMPLE, train_labels) # 训练模型 # 用绘图工具创建手写数字5图像(大小20x20)进行测试(黑白二值图像) test = cv2.imread('d5.png', 0) # 打开测试图像 test = cv2.resize(test, (20, 20)) # 转换为20x20大小 test_data = test.reshape(1, 400).astype(np.float32) # 转换为测试数据 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 执行测试 print(result.ravel()) print(neighbours.ravel()) # 拍摄图像数字3,进行测试(非黑白二值图像) img2 = cv2.imread('d3.png', 0) img2 = cv2.resize(img2, (20, 20)) ret, img2 = cv2.threshold(img2, 150, 255, cv2.THRESH_BINARY_INV) # 反二值化阈值处理 test_data = img2.reshape(1, 400).astype(np.float32) # 转换为测试数据 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 执行测试 print(result.ravel()) print(neighbours.ravel()) 以上代码怎么优化

下面是对代码的一些优化建议: 1. 使用 with 语句打开文件:在读取图片时,最好使用 with 语句打开文件,这样可以确保文件在使用后被正确关闭,也可以避免一些意外情况下的错误。 2. 使用 reshape 的 -1 参数:在将 digits 转换为 numpy 数组时,可以使用 reshape 函数的 -1 参数,这样 numpy 将自动计算数组的大小。 3. 使用 ravel 替换 flatten:在将结果打印出来时,可以使用 ravel 函数替换 flatten 函数,因为 ravel 函数返回的是一个视图,而不是一个副本,因此更加高效。 4. 优化二值化处理:在对测试图像进行二值化处理时,可以使用 adaptiveThreshold 函数来自适应地进行阈值处理,这比使用固定的阈值要更加准确。 5. 使用 plt.imshow 显示图像:在显示图像时,可以使用 plt.imshow 函数,这样可以更加方便地进行调整和处理。 6. 添加注释:在代码中添加注释,可以帮助其他人更好地理解代码的含义和作用。 下面是优化后的代码: ``` import cv2 import numpy as np import matplotlib.pyplot as plt # 打开文件并读取灰度图像 with open('digits.png', 'rb') as f: gray = cv2.imdecode(np.frombuffer(f.read(), np.uint8), cv2.IMREAD_GRAYSCALE) # 分解数字:50行,100列 digits = np.hsplit(np.vstack(np.hsplit(gray, 100)), 50) # 转换为numpy数组 np_digits = np.array(digits) # 转换为二维数组,每个图像400个像素 train_data = np_digits.reshape(-1, 400).astype(np.float32) # 定义标志 train_labels = np.repeat(np.arange(10), 500)[:, np.newaxis] # 创建kNN分类器 knn = cv2.ml.KNearest_create() # 训练模型 knn.train(train_data, cv2.ml.ROW_SAMPLE, train_labels) # 用绘图工具创建手写数字5图像(大小20x20)进行测试(黑白二值图像) test = cv2.imread('d5.png', cv2.IMREAD_GRAYSCALE) # 转换为20x20大小 test = cv2.resize(test, (20, 20)) # 自适应阈值二值化处理 test = cv2.adaptiveThreshold(test, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2) # 转换为测试数据 test_data = test.reshape(1, 400).astype(np.float32) # 执行测试 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 打印测试结果 print(result.ravel()) print(neighbours.ravel()) # 拍摄图像数字3,进行测试(非黑白二值图像) img2 = cv2.imread('d3.png', cv2.IMREAD_GRAYSCALE) # 转换为20x20大小 img2 = cv2.resize(img2, (20, 20)) # 自适应阈值二值化处理 img2 = cv2.adaptiveThreshold(img2, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2) # 转换为测试数据 test_data = img2.reshape(1, 400).astype(np.float32) # 执行测试 ret, result, neighbours, dist = knn.findNearest(test_data, k=3) # 打印测试结果 print(result.ravel()) print(neighbours.ravel()) # 显示测试图像 plt.imshow(test, cmap='gray') plt.show() # 显示训练图像 plt.imshow(gray, cmap='gray') plt.show() ```

data = pd.read_csv("data.csv") data.replace("M",1,inplace=True) data.replace("B",0,inplace=True) #获取特征x和特征y X = data.iloc[:, 3:5].values x = np.array(X) y = data.diagnosis #拆分训练集与测试集 #基于线性核函数的svm绘制分类边界 model = svm.SVC(kernel = 'linear') model.fit(x, y) #绘制分类边界线 l,r = x[:,0].min()-1,x[:,0].max()+1 b,t = x[:,1].min()-1,x[:,1].max()+1 n = 500 grid_x, grid_y = np.meshgrid(np.linspace(l, r, n), np.linspace(b, t, n)) #grid_x与geid_y押平了组成模型的输入,预测输出 mesh_x = np.column_stack((grid_x.ravel(), grid_y.ravel())) pred_mesh_y = model.predict(mesh_x) grid_z = pred_mesh_y.reshape(grid_x.shape) #绘制这些点 plt.figure('SVM', facecolor = 'lightgray') plt.title('SVM', fontsize = 16) plt.xlabel('x', fontsize = 14) plt.ylabel('y', fontsize = 14) plt.pcolormesh(grid_x, grid_y, grid_z, cmap = 'gray') plt.scatter(x[:, 0], x[:, 1], s = 60, c = y, label = 'points', cmap = 'jet') plt.legend() plt.show()

这段代码使用了支持向量机(SVM)算法对数据进行分类,并绘制了分类边界线。首先,对数据进行预处理,将"M"替换成1,"B"替换成0。然后使用特征x和特征y进行分类,其中x取data的第3到第5列,y取data的diagnosis列。接着,对数据进行拆分,分为训练集和测试集。然后,创建SVM模型对象,并使用fit()方法进行训练。接下来,以线性核函数为基础,使用meshgrid()函数生成网格点坐标,并将其输入SVM模型进行预测,得到分类结果。最后,使用pcolormesh()函数绘制分类边界线,并使用scatter()函数绘制数据点。其中,数据点用颜色表示类别,分类边界线用灰度表示。

相关推荐

data = pd.read_csv("data.csv") data.replace("M",1,inplace=True) data.replace("B",0,inplace=True) #获取特征x和特征y X = data.iloc[:, 3:5].values x = np.array(X) y = data.diagnosis y = np.array(y) #创建决策树算法对象 tree_clf = DecisionTreeClassifier(max_depth=2) #构建决策树 tree_clf.fit(x,y) #绘制决策树结构 tree.plot_tree(tree_clf) from matplotlib.colors import ListedColormap plt.rcParams["font.sans-serif"] = ["SimHei"] plt.rcParams["axes.unicode_minus"] = False #定义绘制决策树边界的函数 def plot_decision_boundary(clf, X, y, axes=[0, 10 , 0 , 5], data=True, legend=False, plot_training=True): x1s = np.linspace(axes[0], axes[1], 100) x2s = np.linspace(axes[2], axes[3], 100) x1, x2 = np.meshgrid(x1s, x2s) X_new = np.c_[x1.ravel(), x2.ravel()] y_pred = clf.predict(X_new).reshape(x1.shape) custom_cmap = ListedColormap(['#fafab0', '#0909ff', '#a0faa0']) plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap) if not data: custom_cmap2 = ListedColormap(['#7d7d58', '#4c4c7f', '#507d50']) plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8) if plot_training: plt.plot(X[:, 0][y == 0], X[:, 1][y == 0], "yo", label="0") plt.plot(X[:, 0][y == 1], X[:, 1][y == 1],"bs", label="1") plt.axis(axes) if data: plt.xlabel("属性",fontsize=14) plt.ylabel("特征",fontsize=14) else: plt.xlabel(r"$x_1$", fontsize=18) plt.xlabel(r"$x_2$", fontsize=18,rotation=0) if legend: plt.legend(loc="lower right", fontsize=14) tree_clf1 = DecisionTreeClassifier(random_state=42) tree_clf2 = DecisionTreeClassifier(min_samples_leaf=4,random_state=43) tree_clf1.fit(x,y) tree_clf2.fit(x,y) plt.figure(figsize=(15,6)) plt.subplot(121) plot_decision_boundary(tree_clf1, x, y, axes=[0, 40, 50, 150], data=False) plt.title('圖一') plt.subplot(122) plot_decision_boundary(tree_clf2, x, y, axes=[0, 40, 50, 150], data=False) plt.title('圖二')

最新推荐

recommend-type

HTML+CSS制作的个人博客网页.zip

如标题所述,内有详细说明
recommend-type

基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步