stm32直流减速电机PWM驱动与pid算法控制稳定输出代码
时间: 2023-12-25 21:05:50 浏览: 115
PID双闭环 STM32 F1_HAL__位置速度闭环控制 源代码
5星 · 资源好评率100%
您好!下面是一个基于PID算法控制STM32直流减速电机的PWM驱动的代码示例:
```C
#include "stm32f4xx.h"
// PID参数
float Kp = 1.0;
float Ki = 0.5;
float Kd = 0.2;
// 电机速度设定值
int targetSpeed = 1000;
// PID变量
float error = 0;
float integral = 0;
float derivative = 0;
float lastError = 0;
// PWM输出频率和分辨率
int pwmFrequency = 20000; // 20kHz
int pwmResolution = 1000; // 10-bit分辨率
// 初始化PWM
void PWM_init(void) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_TIM3);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_TIM3);
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_TimeBaseStructure.TIM_Period = pwmResolution - 1;
TIM_TimeBaseStructure.TIM_Prescaler = (SystemCoreClock / pwmFrequency) - 1;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
TIM_Cmd(TIM3, ENABLE);
}
// 初始化编码器
void Encoder_init(void) {
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource0, GPIO_AF_TIM5);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_TIM5);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE);
TIM_EncoderInterfaceConfig(TIM5, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);
TIM_Cmd(TIM5, ENABLE);
}
// 获取编码器计数器值
int Encoder_getCount(void) {
return (int)TIM_GetCounter(TIM5);
}
// PID控制
void PID_control(void) {
int currentSpeed = Encoder_getCount();
// 计算误差
error = targetSpeed - currentSpeed;
// 计算积分项
integral += error;
// 计算微分项
derivative = error - lastError;
lastError = error;
// 计算PID输出
float output = Kp * error + Ki * integral + Kd * derivative;
// 限制输出范围
if (output > pwmResolution) {
output = pwmResolution;
} else if (output < -pwmResolution) {
output = -pwmResolution;
}
// 设置PWM占空比
TIM_SetCompare1(TIM3, (uint16_t)(pwmResolution - fabs(output)));
}
int main(void) {
PWM_init();
Encoder_init();
while (1) {
PID_control();
}
}
```
这段代码使用了STM32的TIM3模块作为PWM输出,使用TIM5模块作为编码器输入。其中,`PWM_init()`函数用于初始化PWM输出,`Encoder_init()`函数用于初始化编码器。`PID_control()`函数用于进行PID控制,计算PID输出,并设置PWM占空比。
请根据您的具体硬件和需求进行适当的修改和调整。希望对您有所帮助!如果还有其他问题,请随时提问。
阅读全文