stm32f103c8t6用pid算法写一个五路的循迹小车(四个直流减速电机)

时间: 2023-09-27 18:12:34 浏览: 138
循迹小车是一种常见的机器人,它通过感知地面上的黑色线条,实现自动寻路的功能。PID算法是一种常见的控制算法,用于控制机器人的行动,下面我们来介绍如何使用STM32F103C8T6控制五路电机的循迹小车。 首先,需要准备以下硬件材料: - STM32F103C8T6开发板 - L298N电机驱动模块 - TCRT5000红外线传感器5个 - 直流减速电机4个 - 小车底盘 接下来,我们需要进行以下步骤: 1. 连接硬件 将L298N电机驱动模块与STM32F103C8T6开发板连接,连接方式如下: | L298N引脚 | STM32F103C8T6引脚 | |---------|------------------| | ENA | PB0 | | IN1 | PB1 | | IN2 | PB2 | | IN3 | PB10 | | IN4 | PB11 | | ENB | PB12 | 将TCRT5000红外线传感器连接到STM32F103C8T6开发板的引脚上,连接方式如下: | TCRT5000引脚 | STM32F103C8T6引脚 | |-------------|------------------| | VCC | 5V | | GND | GND | | DO | PA0~PA4 | 将直流减速电机连接到L298N电机驱动模块上,连接方式如下: | 直流减速电机引脚 | L298N引脚 | |----------------|----------| | 正极 | OUT1 | | 负极 | OUT2 | | 正极 | OUT3 | | 负极 | OUT4 | 2. 编写代码 接下来,我们需要编写代码来实现循迹小车的功能。首先,我们需要对红外线传感器进行初始化,然后读取传感器的数据,并根据数据来控制小车的移动方向。具体代码如下: ```c #include "stm32f10x.h" void delay_us(u32 nus) { u32 i; for(i=0;i<nus*8;i++); } void delay_ms(u16 nms) { u16 i; for(i=0;i<nms;i++) delay_us(1000); } void init_GPIO(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); } void motor_forward(u8 speed) { GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET); GPIO_WriteBit(GPIOB, GPIO_Pin_10, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_SET); TIM_SetCompare3(TIM2, speed); TIM_SetCompare4(TIM2, speed); TIM_SetCompare1(TIM3, speed); TIM_SetCompare2(TIM3, speed); } void motor_backward(u8 speed) { GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_10, Bit_SET); GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_RESET); TIM_SetCompare3(TIM2, speed); TIM_SetCompare4(TIM2, speed); TIM_SetCompare1(TIM3, speed); TIM_SetCompare2(TIM3, speed); } void motor_left(u8 speed) { GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET); GPIO_WriteBit(GPIOB, GPIO_Pin_10, Bit_SET); GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_RESET); TIM_SetCompare3(TIM2, speed); TIM_SetCompare4(TIM2, speed); TIM_SetCompare1(TIM3, speed); TIM_SetCompare2(TIM3, speed); } void motor_right(u8 speed) { GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_10, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_SET); TIM_SetCompare3(TIM2, speed); TIM_SetCompare4(TIM2, speed); TIM_SetCompare1(TIM3, speed); TIM_SetCompare2(TIM3, speed); } void motor_stop(void) { GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_10, Bit_RESET); GPIO_WriteBit(GPIOB, GPIO_Pin_11, Bit_RESET); TIM_SetCompare3(TIM2, 0); TIM_SetCompare4(TIM2, 0); TIM_SetCompare1(TIM3, 0); TIM_SetCompare2(TIM3, 0); } u8 read_sensor(void) { u8 i,sensor_data=0; for(i=0;i<5;i++) { if(GPIO_ReadInputDataBit(GPIOA,1<<i)==0) sensor_data|=1<<i; } return sensor_data; } void pid_control(u8 sensor_data) { s16 error; s16 p_term; s16 i_term; s16 d_term; static s16 last_error=0; static s16 integral=0; error=sensor_data-0x0F; p_term=error*2; integral+=error; i_term=integral*0.001; d_term=(error-last_error)*40; last_error=error; s16 speed=p_term+i_term+d_term; if(speed>255) speed=255; if(speed<-255) speed=-255; if(speed>0) motor_forward(speed); else if(speed<0) motor_backward(-speed); else motor_stop(); } int main(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 | RCC_APB2Periph_TIM8, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 | RCC_APB1Periph_TIM3, ENABLE); TIM_TimeBaseStructure.TIM_Period = 999; TIM_TimeBaseStructure.TIM_Prescaler = 71; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); TIM_TimeBaseInit(TIM8, &TIM_TimeBaseStructure); TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM1, &TIM_OCInitStructure); TIM_OC2Init(TIM1, &TIM_OCInitStructure); TIM_OC3Init(TIM1, &TIM_OCInitStructure); TIM_OC4Init(TIM1, &TIM_OCInitStructure); TIM_OC1Init(TIM8, &TIM_OCInitStructure); TIM_OC2Init(TIM8, &TIM_OCInitStructure); TIM_OC3Init(TIM8, &TIM_OCInitStructure); TIM_OC4Init(TIM8, &TIM_OCInitStructure); TIM_OC3Init(TIM2, &TIM_OCInitStructure); TIM_OC4Init(TIM2, &TIM_OCInitStructure); TIM_OC1Init(TIM3, &TIM_OCInitStructure); TIM_OC2Init(TIM3, &TIM_OCInitStructure); TIM_Cmd(TIM1, ENABLE); TIM_Cmd(TIM8, ENABLE); TIM_Cmd(TIM2, ENABLE); TIM_Cmd(TIM3, ENABLE); init_GPIO(); while(1) { u8 sensor_data=read_sensor(); pid_control(sensor_data); delay_ms(10); } } ``` 3. 调试测试 将代码烧录到STM32F103C8T6开发板上,然后将小车放在地面上,让它自行行驶,观察小车的行动是否符合预期。如果出现异常情况,可以通过调试代码来解决问题。 这样,我们就成功地使用STM32F103C8T6控制五路电机的循迹小车了。

相关推荐

zip
前言: 开始之前先要说为什么要采用PID的算法来控制小车。玩过小车的DIY爱好者们都会碰到这样一种情况:为什么本该直线行驶的小车走着走着轨迹就会发生偏移,即所谓的“走不直”。 小车走不直的原因有:两个电机本身的驱动特性不可能完全相同,两个电机外形大小不可能是完全一致,组装时精度也会出现差异,另外轮胎在滚动时打滑、遇到细小的障碍物等因素都会造成左右轮的速度出现差异,从而走不直。开环控制是无法消除左右轮的速度误差的,因为上述的扰动是随机的。 要想小车走一条直线,唯有实现闭环控制,当小车受到扰动时能对左右轮及时给予反馈,修正两轮的速度偏差,从而可以走出一条直线。PID算法就是一种闭环控制算法,实现PID算法需得从硬件上实现闭环控制,即存在反馈,所以我采用的是带测速装置的电机。 项目简介: 本项目采用的是PID控制算法来修正小车行走时两轮的速度偏差,实现小车可以走直线。小车是使用一个安卓App来控制小车的行走路径,App通过App Inventor2来进行编写。 完成作品图: 需要用到的材料: 1. Arduino Uno 2. Arduino Uno的扩展板 3. DFRobot L298 双路2A直流电机驱动板 4. HC-05或HC-06的蓝牙模块 5. 坦克小车底盘 6. 两个带霍尔传感器的电机 7. 锂电池 8. 杜邦线若干 软件部分: 1. Arduino IDE 2. App Invent 附件内容截图:

最新推荐

recommend-type

protobuf-3.9.1-cp36-cp36m-win32.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

protobuf-3.15.8-cp35-cp35m-win_amd64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

【雷达仿真】基于matlab高频地波雷达仿真(目标和海洋回波功率谱密度 噪声)【含Matlab源码 4722期】.mp4

CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信
recommend-type

Labview虚拟频率计.rar.zip

Labview虚拟频率计.rar
recommend-type

python安装教程.docx

python安装
recommend-type

基于联盟链的农药溯源系统论文.doc

随着信息技术的飞速发展,电子商务已成为现代社会的重要组成部分,尤其在移动互联网普及的背景下,消费者的购物习惯发生了显著变化。为了提供更高效、透明和安全的农产品交易体验,本论文探讨了一种基于联盟链的农药溯源系统的设计与实现。 论文标题《基于联盟链的农药溯源系统》聚焦于利用区块链技术,特别是联盟链,来构建一个针对农产品销售的可信赖平台。联盟链的优势在于它允许特定参与方(如生产商、零售商和监管机构)在一个共同维护的网络中协作,确保信息的完整性和数据安全性,同时避免了集中式数据库可能面临的隐私泄露问题。 系统开发采用Java语言作为主要编程语言,这是因为Java以其稳定、跨平台的特性,适用于构建大型、复杂的企业级应用。Spring Boot框架在此过程中起到了关键作用,它提供了快速开发、模块化和轻量级的特点,极大地简化了项目的搭建和维护。 数据库选择MySQL,因其广泛应用于企业级应用且性能良好,能够支持大规模的数据处理和查询。系统设计分为前台和后台两大部分。前台界面面向普通用户,提供一系列功能,如用户注册和登录、查看农产品信息、查看公告、添加商品到购物车以及结算和管理订单。这些功能旨在提升用户体验,使消费者能够便捷地获取农产品信息并完成购买。 后台则主要服务于管理员,包括用户管理、农产品分类管理、基础信息管理(如农药信息)、订单管理和公告管理等。这些功能确保了信息的准确记录和管理,同时也支持对系统的有效运维。 关键词"农产品"、"农药"、"溯源"、"SpringBoot框架"和"MySQL"强调了论文的核心研究内容,即通过联盟链技术强化农产品的全程追溯能力,确保食品安全,提高消费者信任度,同时展示了所用的技术栈和平台选择。 这篇论文不仅探讨了在当前电商环境下如何利用区块链技术改进农药溯源系统,还深入剖析了其实现过程和关键组件,为农产品供应链的透明化和信息化提供了一个实用的解决方案。这样的系统在保障消费者权益、推动绿色农业发展等方面具有重要意义。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python代码雨与可维护性:保持代码清晰易维护,避免代码雨困扰

![Python代码雨与可维护性:保持代码清晰易维护,避免代码雨困扰](https://img-blog.csdnimg.cn/769c66afbeac442ca7b77161762c73a4.png) # 1. Python代码雨的概念 ### 1.1 代码雨的定义和危害 代码雨是指在Python代码中出现大量重复、冗余和难以维护的代码片段。它会对代码的可读性、可维护性和可扩展性产生严重影响。 ### 1.2 导致代码雨的常见原因 * **缺乏模块化和封装:**代码没有被合理地组织成模块和类,导致代码分散且难以管理。 * **命名不规范和注释不足:**变量、函数和类的命名不一致或不直
recommend-type

编写代码,实现seq2seq结构中的编码器和解码器。

编写代码实现seq2seq结构中的编码器和解码器,需要先了解seq2seq模型的基本原理。seq2seq模型包含编码器和解码器两个部分,其中编码器将输入序列映射为固定长度的向量表示,而解码器则使用该向量表示来生成输出序列。以下是实现seq2seq结构中的编码器和解码器的基本步骤: 1. 编写编码器的代码:编码器通常由多个循环神经网络(RNN)层组成,可以使用LSTM或GRU等。输入序列经过每个RNN层后,最后一个RNN层的输出作为整个输入序列的向量表示。编码器的代码需要实现RNN层的前向传播和反向传播。 2. 编写解码器的代码:解码器通常也由多个RNN层组成,与编码器不同的是,解码器在每个
recommend-type

基于Python的猫狗宠物展示系统.doc

随着科技的进步和人们生活质量的提升,宠物已经成为现代生活中的重要组成部分,尤其在中国,宠物市场的需求日益增长。基于这一背景,"基于Python的猫狗宠物展示系统"应运而生,旨在提供一个全方位、便捷的在线平台,以满足宠物主人在寻找宠物服务、预订住宿和旅行时的需求。 该系统的核心开发技术是Python,这门强大的脚本语言以其简洁、高效和易读的特性被广泛应用于Web开发。Python的选择使得系统具有高度可维护性和灵活性,能够快速响应和处理大量数据,从而实现对宠物信息的高效管理和操作。 系统设计采用了模块化的架构,包括用户和管理员两个主要角色。用户端功能丰富多样,包括用户注册与登录、宠物百科、宠物信息查询(如品种、健康状况等)、宠物医疗咨询、食品推荐以及公告通知等。这些功能旨在为普通宠物主人提供一站式的宠物生活服务,让他们在享受养宠乐趣的同时,能够方便快捷地获取所需信息和服务。 后台管理模块则更为专业和严谨,涵盖了系统首页、个人中心、用户管理、宠物信息管理(包括新品种添加和更新)、宠物申领流程、医疗预约、食品采购和管理系统维护等多个方面。这些功能使得管理员能够更好地组织和监管平台内容,确保信息的准确性和实时性。 数据库方面,系统选择了MySQL,作为轻量级但功能强大的关系型数据库,它能有效存储和管理大量的宠物信息数据,支持高效的数据查询和处理,对于复杂的数据分析和报表生成提供了可靠的基础。 这个基于Python的猫狗宠物展示系统不仅解决了宠物主人在出行和日常照顾宠物时的信息查找难题,还提升了宠物行业的数字化管理水平。它的实施将推动宠物服务行业向着更智能化、个性化方向发展,极大地提高了宠物主人的生活质量,也为企业和个人提供了新的商业机会。关键词“宠物”、“管理”、“MySQL”和“Python”恰当地概括了该系统的主题和核心技术,突显了其在现代宠物行业中的重要地位。