已有minist训练集和测试集,用Python实现基于各类算法minist数据集的分类
时间: 2024-03-25 22:38:32 浏览: 78
好的,我可以为您提供一个基于各类算法的mnist数据集分类器的Python实现,包括逻辑回归、支持向量机、决策树、随机森林和神经网络。代码如下:
```python
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
# 加载数据
mnist = fetch_openml('mnist_784')
X, y = mnist['data'], mnist['target']
X = X / 255.0 # 将像素值进行归一化
# 划分训练集和测试集
train_size = 60000
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]
# 逻辑回归分类器
lr_classifier = LogisticRegression(random_state=0)
lr_classifier.fit(X_train, y_train)
lr_predicted = lr_classifier.predict(X_test)
lr_accuracy = accuracy_score(y_test, lr_predicted)
print("逻辑回归分类器的准确度为:", lr_accuracy)
# SVM分类器
svm_classifier = SVC(random_state=0)
svm_classifier.fit(X_train, y_train)
svm_predicted = svm_classifier.predict(X_test)
svm_accuracy = accuracy_score(y_test, svm_predicted)
print("SVM分类器的准确度为:", svm_accuracy)
# 决策树分类器
dt_classifier = DecisionTreeClassifier(random_state=0)
dt_classifier.fit(X_train, y_train)
dt_predicted = dt_classifier.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_predicted)
print("决策树分类器的准确度为:", dt_accuracy)
# 随机森林分类器
rf_classifier = RandomForestClassifier(random_state=0)
rf_classifier.fit(X_train, y_train)
rf_predicted = rf_classifier.predict(X_test)
rf_accuracy = accuracy_score(y_test, rf_predicted)
print("随机森林分类器的准确度为:", rf_accuracy)
# 神经网络分类器
nn_classifier = MLPClassifier(random_state=0)
nn_classifier.fit(X_train, y_train)
nn_predicted = nn_classifier.predict(X_test)
nn_accuracy = accuracy_score(y_test, nn_predicted)
print("神经网络分类器的准确度为:", nn_accuracy)
```
在这个实现中,我们首先加载mnist数据集,并将像素值进行归一化。然后,我们将数据集划分为训练集和测试集,并使用逻辑回归、SVM、决策树、随机森林和神经网络这五种不同的分类器进行训练和测试,最后打印出每种分类器的准确度。
需要注意的是,在这个实现中我们使用了比较简单的分类器,如果你需要更高的准确度和更复杂的模型,可以尝试使用深度学习算法,如卷积神经网络等。
阅读全文