不使用function在matlab中实现这段代码的功能 function [At,Ph,A2]=EnvelopPhase(X,f0,fs) HX=imag(hilbert(X)); [M,N]=size(X); t=0:1/fs:((N-1)/fs); Ac=X.cos(2pif0t)+HX.sin(2pif0t); As=HX.cos(2pif0t)-X.sin(2pif0t); Ph=atan(As./Ac); A2=Ac.*Ac+As.As; At=sqrt(A2); function X=Narrowbandsignal(N,f0,delt,fs,M); N1=N-M; xt=random(‘norm’,0,1,[1,N1]); f1=f02/fs; df=delt/fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht) return N=10000;f0=10000;delt=400;fs=22000;M=50; al=2;a2=4;a3=8; sitl=pi/6;sit2=pi/4;sit3=pi/3 X=Narrowbandsignal(N,f0,delt,fs,M); X=X/sqrt(var(X)); t=0:1/fs:((N-1)/fs); X1=X+alcos(2pif0t+sitl); X2=X+a2cos(2pif0t+sit2); X3=X+a3cos(2pif0t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=hist(Atl, LA); GA2=hist(At2, LA); GA3=hist(At3, LA); plot(LA,GA1,‘:’,LA,GA2,‘-’,LA,GA3,‘–’); title(“包络的分布直方图”); figure; LP=-pi/2:0.05:pi/2; GP1=hist((Ph1-sitl),LP); GP2=hist((Ph2-sit2),LP); GP3=hist((Ph3-sit3),LP); plot(LP,GP1,‘:’,LP,GP2,‘-’,LP,GP3,‘–’); title(“相位的分布直方图”); figure; LA2=0:1:120; GA21=hist(A21,LA2); GA22=hist(A22,LA2); GA23=hist(A23,LA2); plot(LA2,GA21,‘:’, LA2,GA22,‘-’,LA2,GA23,‘–’); title(“包络平方值的分布直方图”);
时间: 2024-03-23 17:43:40 浏览: 121
以下是不使用 `function` 实现该代码的示例:
```
X = randn(1, N);
HX = imag(hilbert(X));
[M, N] = size(X);
t = 0:1/fs:((N-1)/fs);
Ac = X .* cos(2*pi*f0*t) + HX .* sin(2*pi*f0*t);
As = HX .* cos(2*pi*f0*t) - X .* sin(2*pi*f0*t);
Ph = atan(As ./ Ac);
A2 = Ac .* Ac + As .* As;
At = sqrt(A2);
N1 = N - M;
xt = randn(1, N1);
f1 = f0 * 2 / fs;
df = delt / fs;
ht = fir1(M, [f1-df f1+df]);
X = conv(xt, ht);
X1 = X + al*cos(2*pi*f0*t+sitl);
X2 = X + a2*cos(2*pi*f0*t+sit2);
X3 = X + a3*cos(2*pi*f0*t+sit3);
HX1 = imag(hilbert(X1));
HX2 = imag(hilbert(X2));
HX3 = imag(hilbert(X3));
Ac1 = X1 .* cos(2*pi*f0*t) + HX1 .* sin(2*pi*f0*t);
As1 = HX1 .* cos(2*pi*f0*t) - X1 .* sin(2*pi*f0*t);
Ph1 = atan(As1 ./ Ac1);
A21 = Ac1 .* Ac1 + As1 .* As1;
Atl = sqrt(A21);
Ac2 = X2 .* cos(2*pi*f0*t) + HX2 .* sin(2*pi*f0*t);
As2 = HX2 .* cos(2*pi*f0*t) - X2 .* sin(2*pi*f0*t);
Ph2 = atan(As2 ./ Ac2);
A22 = Ac2 .* Ac2 + As2 .* As2;
At2 = sqrt(A22);
Ac3 = X3 .* cos(2*pi*f0*t) + HX3 .* sin(2*pi*f0*t);
As3 = HX3 .* cos(2*pi*f0*t) - X3 .* sin(2*pi*f0*t);
Ph3 = atan(As3 ./ Ac3);
A23 = Ac3 .* Ac3 + As3 .* As3;
At3 = sqrt(A23);
LA = 0:0.4:12;
GA1 = hist(Atl, LA);
GA2 = hist(At2, LA);
GA3 = hist(At3, LA);
plot(LA, GA1, ':', LA, GA2, '-', LA, GA3, '--');
title("包络的分布直方图");
figure;
LP = -pi/2:0.05:pi/2;
GP1 = hist((Ph1-sitl), LP);
GP2 = hist((Ph2-sit2), LP);
GP3 = hist((Ph3-sit3), LP);
plot(LP, GP1, ':', LP, GP2, '-', LP, GP3, '--');
title("相位的分布直方图");
figure;
LA2 = 0:1:120;
GA21 = hist(A21, LA2);
GA22 = hist(A22, LA2);
GA23 = hist(A23, LA2);
plot(LA2, GA21, ':', LA2, GA22, '-', LA2, GA23, '--');
title("包络平方值的分布直方图");
```
阅读全文