matlab四阶龙格库塔算法代码
时间: 2023-09-10 15:13:28 浏览: 168
四阶龙格库塔法,改进欧拉法,欧拉法附matlab代码.zip
MATLAB四阶龙格库塔算法的代码如下所示:
```matlab
function [t, y, n = runge_kuttx0_o4(ufunc, tspan, y0, h)
if nargin < 4
h = 0.01;
end
if size(tspan) == [1, 2]
t0 = tspan(1);
tn = tspan(2);
else
error(message('MATLAB:runge_kuttx0_o4:WrongDimensionOfTspan'));
end
n = floor((tn - t0) / h);
t(1) = t0;
y(:, 1) = y0;
for i = 1:n
t(i + 1) = t(i) + h;
k1 = ufunc(t(i), y(:, i));
k2 = ufunc(t(i) + h/2, y(:, i) + h*k1/2);
k3 = ufunc(t(i) + h/2, y(:, i) + h*k2/2);
k4 = ufunc(t(i) + h, y(:, i) + h*k3);
y(:, i + 1) = y(:, i) + h*(k1 + 2*k2 + 2*k3 + k4)/6; %按照龙格库塔方法进行数值求解
end
end
```
这段代码实现了四阶龙格库塔算法,用于求解微分方程的数值解。你需要传入微分方程组的函数名称、时间起点和终点、初始值和步长作为参数调用该函数。它将返回计算得到的时间、数值解矩阵以及步数。这个代码的优点是使用了函数句柄,方便复用,并且模仿了ode45函数的输入变量格式,使用起来比较方便。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [MATLAB四阶龙格库塔法_求解微分方程数值解_源程序代码_fourth_order_Runge_Kutta_matlab](https://download.csdn.net/download/m0_53407570/85190131)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [四阶龙格库塔算法及matlab代码](https://blog.csdn.net/qq_41030359/article/details/114749865)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文