yolov5学习率怎么调
时间: 2023-09-18 20:11:31 浏览: 138
在yolov5的训练过程中,作者采用了不同的学习率调整方法来优化模型的训练效果。首先,作者对不同的层使用不同的学习率调整方法,包括权重层、偏执层和BN层,这样可以使得模型的训练效果更好。其次,在学习率的更新中,采用了预热(warm-up)和余弦退火(CosineAnnealing)的策略。预热阶段通过一维线性插值来逐步增加学习率,而余弦退火阶段则采用余弦函数来调整学习率。这样的学习率调整策略能够帮助模型更好地收敛。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [1.Yolov5学习率调整策略](https://blog.csdn.net/jhsignal/article/details/113375398)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [YOLOv5 训练技巧(四)](https://blog.csdn.net/weixin_44227733/article/details/124151340)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文