帮我写一个VAE算法进行数据增强生成的python代码
时间: 2023-04-01 21:04:24 浏览: 146
DeepMusicvStyle:ICME 2020论文“基于样式的音乐生成”的代码回购。 VAE模型,可生成风格音乐
以下是一个简单的 VAE 数据增强生成的 Python 代码示例:
```python
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 定义 VAE 模型
latent_dim = 2
encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = layers.Lambda(lambda t: tf.random.normal(tf.shape(t)))(z_mean, z_log_var)
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def train_step(self, data):
if isinstance(data, tuple):
data = data[]
with tf.GradientTape() as tape:
z_mean, z_log_var, z = self.encoder(data)
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
keras.losses.binary_crossentropy(data, reconstruction)
)
reconstruction_loss *= 28 * 28
kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)
kl_loss = tf.reduce_mean(kl_loss)
kl_loss *= -.5
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
return {
"loss": total_loss,
"reconstruction_loss": reconstruction_loss,
"kl_loss": kl_loss,
}
# 加载 MNIST 数据集
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
mnist_digits = np.concatenate([x_train, x_test], axis=)
mnist_digits = np.expand_dims(mnist_digits, -1).astype("float32") / 255
# 训练 VAE 模型
vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam())
vae.fit(mnist_digits, epochs=30, batch_size=128)
# 生成新的图像
random_digits = np.random.normal(size=(10, latent_dim))
generated_digits = decoder.predict(random_digits)
# 显示生成的图像
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 10, figsize=(10, 1))
for i in range(10):
axs[i].imshow(generated_digits[i, :, :, ], cmap="gray")
axs[i].axis("off")
plt.show()
```
希望这个代码示例能够帮助到你!
阅读全文