帮我写一个python中VAE算法进行数据生成增强的代码
时间: 2023-04-03 12:00:37 浏览: 130
好的,我可以回答这个问题。以下是一个简单的 Python VAE 算法进行数据生成增强的代码示例:
```python
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 加载数据集
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# 数据预处理
x_train = x_train.reshape(-1, 784).astype("float32") / 255.
x_test = x_test.reshape(-1, 784).astype("float32") / 255.
# 定义 VAE 模型
latent_dim = 2
encoder_inputs = keras.Input(shape=(784,))
x = layers.Dense(256, activation="relu")(encoder_inputs)
x = layers.Dense(128, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var], name="encoder")
latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(128, activation="relu")(latent_inputs)
x = layers.Dense(256, activation="relu")(x)
decoder_outputs = layers.Dense(784, activation="sigmoid")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
class VAE(keras.Model):
def __init__(self, encoder, decoder, **kwargs):
super(VAE, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def train_step(self, data):
if isinstance(data, tuple):
data = data[]
with tf.GradientTape() as tape:
z_mean, z_log_var = self.encoder(data)
z = self.sampling((z_mean, z_log_var))
reconstruction = self.decoder(z)
reconstruction_loss = tf.reduce_mean(
keras.losses.binary_crossentropy(data, reconstruction)
)
reconstruction_loss *= 784
kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)
kl_loss = tf.reduce_mean(kl_loss)
kl_loss *= -.5
total_loss = reconstruction_loss + kl_loss
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
return {
"loss": total_loss,
"reconstruction_loss": reconstruction_loss,
"kl_loss": kl_loss,
}
def call(self, data):
z_mean, z_log_var = self.encoder(data)
z = self.sampling((z_mean, z_log_var))
return self.decoder(z)
def sampling(self, args):
z_mean, z_log_var = args
batch = tf.shape(z_mean)[]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(.5 * z_log_var) * epsilon
# 训练 VAE 模型
vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam())
vae.fit(x_train, epochs=30, batch_size=128)
# 生成新的数据
n = 10
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
grid_x = np.linspace(-4, 4, n)
grid_y = np.linspace(-4, 4, n)[::-1]
for i, yi in enumerate(grid_y):
for j, xi in enumerate(grid_x):
z_sample = np.array([[xi, yi]])
x_decoded = vae.decoder.predict(z_sample)
digit = x_decoded[].reshape(digit_size, digit_size)
figure[i * digit_size : (i + 1) * digit_size,
j * digit_size : (j + 1) * digit_size] = digit
# 显示生成的新数据
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap="Greys_r")
plt.show()
```
希望这个代码示例能够帮到你。
阅读全文