biodist r语言_R语言如何做COX回归分析和nomogram?
时间: 2024-01-22 21:18:26 浏览: 81
COX回归分析和nomogram是生存分析中常用的方法,R语言中有丰富的生存分析包,可以轻松实现这些分析。
首先需要安装并加载生存分析包`survival`和`rms`,可以使用以下命令:
```
install.packages(c("survival", "rms"))
library(survival)
library(rms)
```
接下来,我们可以使用`coxph()`函数进行COX回归分析。以lung数据集为例,该数据集包含了228名肺癌患者的生存时间和一些基本信息,我们可以使用如下代码进行COX回归分析:
```
data(lung)
fit <- coxph(Surv(time, status) ~ age + sex + ph.ecog + wt.loss, data = lung)
summary(fit)
```
其中,`Surv()`函数用于定义生存时间和事件,`time`表示生存时间,`status`表示生存状态(0表示存活,1表示死亡)。`age`、`sex`、`ph.ecog`、`wt.loss`为预测变量,可以根据实际情况进行修改。
输出结果中,`coef`列为每个预测变量的系数,`exp(coef)`列为各个预测变量的风险比(即相对危险度),`p`列为各个预测变量的显著性检验结果。
接下来,我们可以使用`nomogram()`函数生成nomogram图。nomogram图是一种直观的预测工具,可以根据个体的相关变量快速计算其生存概率。以上述COX回归分析结果为例,我们可以使用如下代码生成nomogram图:
```
nom <- nomogram(fit, fun = function(x) 1 - plogis(x),
funlabel = "Survival Prob",
predictor = TRUE, lp = TRUE)
plot(nom)
```
其中,`fun`参数用于定义生存概率函数,`funlabel`参数为生存概率函数的名称,`predictor`参数表示是否显示预测变量,`lp`参数表示是否显示线性预测(linear predictor)。
生成的nomogram图中,每个预测变量有一个刻度,每个刻度上有一个分数,可以通过将每个预测变量的分数相加,再在nomogram图中找到对应的总分数,即可得到该个体的生存概率。
阅读全文