create table dyxx ( 电影编号 int(8) not null primary key, 电影主演 varchar(20) not null, 电影导演 varchar(20) not null, 电影姓名 varchar(20) not null, 票价信息 int(8) not null, 电影类型 varchar(20) null, 电影时长 varchar(20) not null );

时间: 2024-02-02 09:04:34 浏览: 129
这是一个创建名为 `dyxx` 的表的 SQL 语句,该表包含以下列: - `电影编号`:整数类型,非空,作为主键。 - `电影主演`:字符串类型,非空,表示电影的主演。 - `电影导演`:字符串类型,非空,表示电影的导演。 - `电影姓名`:字符串类型,非空,表示电影的名称。 - `票价信息`:整数类型,非空,表示电影的票价。 - `电影类型`:字符串类型,可为空,表示电影的类型。 - `电影时长`:字符串类型,非空,表示电影的时长。 下面是 SQL 语句: ```sql CREATE TABLE dyxx ( 电影编号 INT(8) NOT NULL PRIMARY KEY, 电影主演 VARCHAR(20) NOT NULL, 电影导演 VARCHAR(20) NOT NULL, 电影姓名 VARCHAR(20) NOT NULL, 票价信息 INT(8) NOT NULL, 电影类型 VARCHAR(20), 电影时长 VARCHAR(20) NOT NULL ); ``` 注意,每个列都有其对应的数据类型和约束条件,例如主键约束、非空约束等。
相关问题

def loadDataset(): filename = "ershoufang_jinan_utf8_clean.csv" names = ["id","communityName","areaName","total","unitPriceValue", "fwhx","szlc","jzmj","hxjg","tnmj", "jzlx","fwcx","jzjg","zxqk","thbl", "pbdt","cqnx","gpsj","jyqs","scjy", "fwyt","fwnx","cqss","dyxx","fbbj", "aa","bb","cc","dd"] miss_value = ["null","暂无数据"] df = pd.read_csv(data_path+filename, header=None,skiprows=[0],names=names,na_values=miss_value) df_latlng = pd.read_csv(data_path +"latlng.csv",skiprows=[0],names=["did","id","communityName","lat","lng"]) del df_latlng["did"] del df_latlng["communityName"] df_merge = pd.merge(df,df_latlng,on="id") data_cluster = df_merge[["id","total","unitPriceValue","jzmj","lat","lng"]] data_cluster = data_cluster.dropna() data_cluster = data_cluster.loc[data_cluster["jzmj"] < 500] data_cluster = data_cluster.loc[data_cluster["total"] < 3000] arr_cluster = np.array(data_cluster).astype(np.float) return arr_cluster data_X = loadDataset() print('data loaded')解释

这段代码定义了一个`loadDataset()`函数,用于加载数据集并进行数据预处理。 首先,函数中定义了一个变量`filename`,表示数据集文件的名称为"ershoufang_jinan_utf8_clean.csv"。然后,定义了一个`names`列表,包含了数据集中的列名。`miss_value`列表表示需要被视为缺失值的特殊值。 接下来,使用`pd.read_csv()`函数读取数据集文件,并设置参数`header=None`表示数据集文件没有列名,`skiprows=[0]`表示跳过第一行(即跳过文件的列名行),`names=names`表示使用之前定义的列名进行命名,`na_values=miss_value`表示将`miss_value`列表中的特殊值视为缺失值。这样就得到了一个包含完整数据的DataFrame `df`。 然后,使用`pd.read_csv()`函数读取名为"latlng.csv"的文件,并设置参数`skiprows=[0]`表示跳过第一行(即跳过文件的列名行),`names=["did","id","communityName","lat","lng"]`表示为这个DataFrame命名列名。接着,通过删除不需要的列来精简DataFrame,即删除了"did"和"communityName"列。 接下来,使用`pd.merge()`函数根据"id"列将两个DataFrame `df`和`df_latlng`合并为一个新的DataFrame `df_merge`。 然后,从合并后的DataFrame `df_merge`中选取所需的特征列,并存储在`data_cluster`中。之后,使用`dropna()`函数删除包含缺失值的行,`loc[]`函数进行数据筛选,保留"jzmj"(建筑面积)小于500且"total"(总价)小于3000的样本。最后,将`data_cluster`转换为Numpy数组,并将其返回给调用者。 最后,通过调用`loadDataset()`函数将加载和预处理之后的数据存储在`data_X`变量中,并打印出"data loaded"表示数据加载完成。

private static final String BASE_PATH="D:\\dyxx\\src\\main\\resources\\public\\"; 怎么把这个修改成在linux系统的路径

要将Windows系统的路径修改为Linux系统的路径,需要进行以下步骤: 1. 将反斜杠`\`替换为斜杠`/`。 2. 将盘符(例如D:)删除。 3. 将路径中的空格用`\`和空格进行转义。 因此,将`D:\dyxx\src\main\resources\public\`修改为Linux系统的路径应该是`/dyxx/src/main/resources/public/`。 修改后的代码如下所示: ``` private static final String BASE_PATH="/dyxx/src/main/resources/public/"; ```
阅读全文

相关推荐

import matplotlib.pyplot as plt import pandas as pd #用来正常显示中文标签 plt.rcParams['font.family']='sans-serif' plt.rcParams['font.sans-serif'] = ['Simhei'] #用来正常显示负号 plt.rcParams['axes.unicode_minus'] = False #定义加载数据的文件名 filename = "../task/ershoufang_jinan_utf8_clean.csv" #自定义数据的行列索引(行索引使用pd默认的,列索引使用自定义的) names = ["id","communityName","areaName","total","unitPriceValue", "fwhx","szlc","jzmj","hxjg","tnmj", "jzlx","fwcx","jzjg","zxqk","thbl", "pbdt","cqnx","gpsj","jyqs","scjy", "fwyt","fwnx","cqss","dyxx","fbbj", "aa","bb","cc","dd"] #自定义需要处理的缺失值标记列表 miss_value = ["null","暂无数据"] df = pd.read_csv(filename,header=None, skiprows=[0],names=names,na_values=miss_value) #绘制房屋户型占比情况 count_fwhx = df['fwhx'].value_counts()[:10] count_other_fwhx = pd.Series({"其他":df['fwhx'].value_counts()[10:].count()}) count_fwhx = count_fwhx.append(count_other_fwhx) fig = plt.figure(figsize=(9,9)) ax = fig.add_subplot(111) ax.set_title("二手房房屋户型占比情况",fontsize=18) pt = count_fwhx.plot(kind="pie",cmap=plt.cm.rainbow,autopct="%3.1f%%",fontsize=12) 步骤2:二手房装修占比 通过饼图的方式对二手房的装修程度进行展示。 参照下面的提示补全缺失的代码: """房屋装修占比情况""" count_zxqk = df["zxqk"].value_counts() count_zxqk.name = "" fig = plt.figure(figsize=(9,9)) ax = fig.add_subplot(111) ax.set_title("二手房装修占比情况",fontsize=18) # 仿照前面的语句,绘制二手房装修占比情况饼图 ...(kind="pie",cmap=plt.cm.rainbow,autopct="%3.1f%%",fontsize=12)

最新推荐

recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

com.harmonyos.exception.DiskReadWriteException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

网络分析-Wireshark数据包筛选技巧详解及应用实例

内容概要:本文档详细介绍了Wireshark软件中各种数据包筛选规则,主要包括协议、IP地址、端口号、包长以及MAC地址等多个维度的具体筛选方法。同时提供了大量实用案例供读者学习,涵盖HTTP协议相关命令和逻辑条件的综合使用方式。 适合人群:对网络安全或数据分析有一定兴趣的研究者,熟悉基本网络概念和技术的专业人士。 使用场景及目标:适用于需要快速准确捕获特定类型网络流量的情况;如网络安全检测、性能优化分析、教学演示等多种实际应用场景。 阅读建议:本资料侧重于实操技能提升,在学习时最好配合实际操作练习效果更佳。注意掌握不同类型条件组合的高级用法,增强问题解决能力。
recommend-type

com.harmonyos.exception.BatteryOverheatException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

com.harmonyos.exception.ServiceUnavailableException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。