【问题描述】歌德巴赫猜想可简单描述为:任何一个充分大的偶数都可以表示为两个素数之和。 例如:4=2+2 6=3+3 8=3+5 ...... 1468=17+1451...... 编写程序实现:输入一个偶数n,输出偶数n的所有素数对。 请设计适当的函数实现。 【输入形式】输入偶数n 【输出形式】对每一个素数对依次输出一行。该行内容是<偶数>=<素数1>+<素数2>,要求:素数1<=素数2.
时间: 2023-07-15 21:14:24 浏览: 107
验证哥德巴赫猜想,任意一个大于等于6的偶数都可以分解为两个素数之和,VB6.0源代码编写
4星 · 用户满意度95%
以下是 Python 代码实现:
```python
def is_prime(n):
"""判断一个数是否为素数"""
if n <= 1:
return False
for i in range(2, int(n**0.5)+1):
if n % i == 0:
return False
return True
def goldbach_conjecture(n):
"""输出偶数n的所有素数对"""
if n < 4 or n % 2:
return
for i in range(2, n // 2 + 1):
if is_prime(i) and is_prime(n-i):
print('{}={}+{}'.format(n, i, n-i))
n = int(input('请输入一个偶数:'))
goldbach_conjecture(n)
```
首先通过 `is_prime` 函数判断一个数是否为素数,然后通过 `goldbach_conjecture` 函数输出偶数n的所有素数对。
阅读全文