用python语言使用A*算法求解八数码问题
时间: 2023-05-30 20:02:12 浏览: 585
八数码问题是一种经典的搜索问题,要求把一个3x3的棋盘上的数字1-8排列成特定的顺序。本文将使用A*算法来求解八数码问题。
A*算法是一种启发式搜索算法,它使用估价函数来评估每个节点的价值,并选择最有希望的节点进行扩展。估价函数是一个启发式函数,它可以预测从当前节点到目标节点的最小代价。在八数码问题中,我们可以使用曼哈顿距离作为估价函数。
以下是使用Python语言实现A*算法求解八数码问题的代码:
```python
import heapq
# 计算曼哈顿距离
def manhattan_distance(state):
distance = 0
for i in range(3):
for j in range(3):
if state[i][j] != 0:
row = (state[i][j] - 1) // 3
col = (state[i][j] - 1) % 3
distance += abs(row - i) + abs(col - j)
return distance
# 判断状态是否合法
def is_valid(state):
nums = set()
for row in state:
for num in row:
if num != 0:
if num in nums:
return False
nums.add(num)
return True
# 获取空格位置
def get_blank(state):
for i in range(3):
for j in range(3):
if state[i][j] == 0:
return (i, j)
# 获取下一步可能的状态
def get_next_states(state):
blank = get_blank(state)
row, col = blank
next_states = []
for i, j in [(row-1, col), (row+1, col), (row, col-1), (row, col+1)]:
if i >= 0 and i < 3 and j >= 0 and j < 3:
next_state = [row[:] for row in state]
next_state[row][col], next_state[i][j] = next_state[i][j], next_state[row][col]
next_states.append(next_state)
return next_states
# A*算法求解八数码问题
def solve_puzzle(start_state, goal_state):
if not is_valid(start_state) or not is_valid(goal_state):
return None
# 初始化起始状态
start_node = {'state': start_state, 'g': 0, 'h': manhattan_distance(start_state), 'parent': None}
open_list = [start_node]
closed_list = set()
while len(open_list) > 0:
# 选择最小估价函数值的节点进行扩展
current_node = heapq.heappop(open_list)
# 判断是否到达目标状态
if current_node['state'] == goal_state:
path = []
while current_node is not None:
path.append(current_node['state'])
current_node = current_node['parent']
path.reverse()
return path
# 将当前节点加入关闭列表
closed_list.add(str(current_node['state']))
# 扩展下一步可能的状态
for next_state in get_next_states(current_node['state']):
if str(next_state) not in closed_list:
# 计算估价函数值,并加入开放列表
next_node = {'state': next_state, 'g': current_node['g']+1, 'h': manhattan_distance(next_state), 'parent': current_node}
heapq.heappush(open_list, next_node)
# 无解
return None
# 测试
start_state = [[2, 8, 3], [1, 6, 4], [7, 0, 5]]
goal_state = [[1, 2, 3], [8, 0, 4], [7, 6, 5]]
path = solve_puzzle(start_state, goal_state)
if path is not None:
for state in path:
print(state)
else:
print("无解")
```
以上代码中,`manhattan_distance`函数计算曼哈顿距离;`is_valid`函数判断状态是否合法;`get_blank`函数获取空格位置;`get_next_states`函数获取下一步可能的状态;`solve_puzzle`函数使用A*算法求解八数码问题。在测试中,我们设置初始状态为`[[2, 8, 3], [1, 6, 4], [7, 0, 5]]`,目标状态为`[[1, 2, 3], [8, 0, 4], [7, 6, 5]]`,并输出求解路径。
阅读全文