实现敂擸端擹端的CTC声擳语擵识别模型。python
时间: 2024-01-01 12:03:49 浏览: 131
要实现 CTC(Connectionist Temporal Classification)声学语音识别模型,可以使用 PyTorch 框架和 Librosa 库进行开发。以下是一个基本的 CTC 模型的实现代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import librosa
class CTCModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(CTCModel, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.lstm1 = nn.LSTM(input_dim, hidden_dim, bidirectional=True, batch_first=True)
self.lstm2 = nn.LSTM(hidden_dim*2, hidden_dim, bidirectional=True, batch_first=True)
self.fc = nn.Linear(hidden_dim*2, output_dim)
def forward(self, x):
# x shape: (batch, seq_len, input_dim)
x, _ = self.lstm1(x)
x, _ = self.lstm2(x)
x = self.fc(x)
x = F.log_softmax(x, dim=-1)
return x
# 定义训练函数
def train(model, optimizer, criterion, train_loader, device):
model.train()
total_loss = 0
for i, (inputs, targets, input_lengths, target_lengths) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
outputs = outputs.transpose(0, 1) # (seq_len, batch, output_dim)
input_lengths = input_lengths.cpu().numpy()
target_lengths = target_lengths.cpu().numpy()
loss = criterion(outputs, targets, input_lengths, target_lengths)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(train_loader)
# 定义测试函数
def test(model, criterion, test_loader, device):
model.eval()
total_loss = 0
with torch.no_grad():
for i, (inputs, targets, input_lengths, target_lengths) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
outputs = outputs.transpose(0, 1) # (seq_len, batch, output_dim)
input_lengths = input_lengths.cpu().numpy()
target_lengths = target_lengths.cpu().numpy()
loss = criterion(outputs, targets, input_lengths, target_lengths)
total_loss += loss.item()
return total_loss / len(test_loader)
# 定义 CTC 损失函数
class CTCLoss(nn.Module):
def __init__(self):
super(CTCLoss, self).__init__()
self.ctc_loss = nn.CTCLoss()
def forward(self, outputs, targets, input_lengths, target_lengths):
batch_size = outputs.size(1)
log_probs = outputs.permute(1, 0, 2)
log_probs_lens = torch.full((batch_size,), log_probs.size(0), dtype=torch.int32)
targets_lens = target_lengths
targets = targets.T
loss = self.ctc_loss(log_probs, targets, log_probs_lens, targets_lens)
return loss
# 加载数据集
def load_dataset(audio_files, transcripts, sample_rate, window_size, window_stride, window, batch_size):
audio_transforms = nn.Sequential(
lambda x: librosa.util.normalize(x),
lambda x: librosa.feature.mfcc(x, sr=sample_rate, n_mfcc=40, n_fft=int(sample_rate*window_size), hop_length=int(sample_rate*window_stride)),
lambda x: (x - x.mean(axis=1, keepdims=True)) / x.std(axis=1, keepdims=True)
)
text_transforms = nn.Sequential(
lambda x: [char2idx[c] for c in x],
torch.LongTensor
)
dataset = SpeechDataset(audio_files, transcripts, audio_transforms, text_transforms)
loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn)
return loader
# 定义数据集类和数据处理函数
class SpeechDataset(torch.utils.data.Dataset):
def __init__(self, audio_files, transcripts, audio_transforms=None, text_transforms=None):
self.audio_files = audio_files
self.transcripts = transcripts
self.audio_transforms = audio_transforms
self.text_transforms = text_transforms
def __getitem__(self, index):
audio_file = self.audio_files[index]
transcript = self.transcripts[index]
audio, sample_rate = librosa.load(audio_file, sr=None)
audio = torch.from_numpy(audio).float()
if self.audio_transforms is not None:
audio = self.audio_transforms(audio)
if self.text_transforms is not None:
transcript = self.text_transforms(transcript)
input_length = audio.size(1)
target_length = len(transcript)
return audio, transcript, input_length, target_length
def __len__(self):
return len(self.audio_files)
def collate_fn(batch):
audios = [item[0] for item in batch]
transcripts = [item[1] for item in batch]
input_lengths = torch.LongTensor([item[2] for item in batch])
target_lengths = torch.LongTensor([item[3] for item in batch])
max_input_length = max(input_lengths)
max_target_length = max(target_lengths)
padded_audios = torch.zeros(len(audios), max_input_length, audios[0].size(0))
padded_transcripts = torch.zeros(len(transcripts), max_target_length, dtype=torch.long)
for i, audio in enumerate(audios):
padded_audios[i, :audio.size(1), :] = audio
for i, transcript in enumerate(transcripts):
padded_transcripts[i, :len(transcript)] = transcript
return padded_audios, padded_transcripts, input_lengths, target_lengths
```
在上述代码中,`CTCModel` 是一个基本的 CTC 模型,包含两个 LSTM 层和一个全连接层。`train` 函数和 `test` 函数分别用于训练和测试模型。`CTCLoss` 是一个 CTC 损失函数类。`load_dataset` 函数用于加载训练和测试数据集,其中 `SpeechDataset` 类和 `collate_fn` 函数用于处理数据。
在使用时,可以先定义训练集和测试集的音频文件路径和文本数据,然后调用 `load_dataset` 函数加载数据集。接着定义模型、训练参数、优化器和损失函数,并开始训练模型。
阅读全文