yolov5实现数据增强
时间: 2023-11-23 16:58:23 浏览: 171
Yolov5是一种目标检测算法,数据增强是提高模型鲁棒性和泛化能力的重要手段。以下是Yolov5中常用的数据增强方式及相应的源代码:
1. 随机缩放
```python
from PIL import Image
import random
def random_resize(img, targets, size_range=(0.2, 2)):
"""
随机缩放图像和目标框
:param img: PIL.Image对象
:param targets: 目标框列表,每个目标框为[x1, y1, x2, y2, class]
:param size_range: 缩放比例范围
:return: 缩放后的图像和目标框
"""
w, h = img.size
size_ratio = random.uniform(*size_range)
new_w, new_h = int(w * size_ratio), int(h * size_ratio)
img = img.resize((new_w, new_h), resample=Image.BILINEAR)
new_targets = []
for target in targets:
x1, y1, x2, y2, cls = target
x1, x2 = x1 * size_ratio, x2 * size_ratio
y1, y2 = y1 * size_ratio, y2 * size_ratio
new_targets.append([x1, y1, x2, y2, cls])
return img, new_targets
```
2. 随机裁剪
```python
import numpy as np
def random_crop(img, targets, crop_size=(640, 640)):
"""
随机裁剪图像和目标框
:param img: PIL.Image对象
:param targets: 目标框列表,每个目标框为[x1, y1, x2, y2, class]
:param crop_size: 裁剪尺寸
:return: 裁剪后的图像和目标框
"""
w, h = img.size
crop_w, crop_h = crop_size
if w == crop_w and h == crop_h:
return img, targets
if w < crop_w or h < crop_h:
img = img.resize((crop_w, crop_h), resample=Image.BILINEAR)
new_targets = []
for target in targets:
x1, y1, x2, y2, cls = target
x1, x2 = x1 * crop_w / w, x2 * crop_w / w
y1, y2 = y1 * crop_h / h, y2 * crop_h / h
new_targets.append([x1, y1, x2, y2, cls])
return img, new_targets
x = np.random.randint(0, w - crop_w)
y = np.random.randint(0, h - crop_h)
img = img.crop((x, y, x + crop_w, y + crop_h))
new_targets = []
for target in targets:
x1, y1, x2, y2, cls = target
x1, x2 = x1 - x, x2 - x
y1, y2 = y1 - y, y2 - y
if x1 < crop_w and x2 > 0 and y1 < crop_h and y2 > 0:
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(crop_w, x2)
y2 = min(crop_h, y2)
new_targets.append([x1, y1, x2, y2, cls])
return img, new_targets
```
3. 随机翻转
```python
def random_flip(img, targets):
"""
随机翻转图像和目标框
:param img: PIL.Image对象
:param targets: 目标框列表,每个目标框为[x1, y1, x2, y2, class]
:return: 翻转后的图像和目标框
"""
if random.random() < 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
new_targets = []
for target in targets:
x1, y1, x2, y2, cls = target
new_targets.append([img.width - x2, y1, img.width - x1, y2, cls])
return img, new_targets
return img, targets
```
阅读全文