pretrain.append('True') TRAIN = train_path VAL = test_path train_data = datasets.ImageFolder(root=TRAIN, transform=preprocess) val_data = datasets.ImageFolder(root=VAL, transform=preprocess) train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) test_loader = DataLoader(val_data, batch_size=batch_size, shuffle=False) print('数据加载完成,开始训练') # 初始化model model = run_train(num_classes) # 训练C类别的分类问题,用CrossEntropyLoss(交叉熵损失函数) criterion = nn.CrossEntropyLoss() # 优化器 optimizer = torch.optim.Adam(model.model.parameters(), learning_rate) best_acc = 0
时间: 2023-06-17 07:07:10 浏览: 89
这段代码看起来像是针对图像分类问题的训练代码。根据代码,它的训练数据集和测试数据集分别位于 `train_path` 和 `test_path` 路径下,使用了 `datasets.ImageFolder` 对象读取图像数据。接着,使用了 `DataLoader` 对象对数据进行批量读取和处理。然后使用 `run_train` 函数初始化了一个模型,使用 `nn.CrossEntropyLoss()` 作为损失函数,使用 `torch.optim.Adam()` 作为优化器。最后,代码中使用了 `best_acc` 变量记录了最好的分类精度。
但是,这段代码存在一些问题。例如,预处理函数 `preprocess` 没有定义,`num_classes` 也没有给出。此外,代码中的 `learning_rate` 变量也没有给出。这些变量需要在代码的其他位置定义。最后,代码中使用了 `append` 函数,但是没有给出要添加的元素,这可能会导致错误。
相关问题
写一个pythorch框架的,用AlexNet进行128*128图像的4分类的程序;其中图像按训练和测度集以及类别存在在不同的文件夹中;输出每个epoch的损失函数值,测试集正确率,验证集正确率;输出混淆矩阵
好的,下面是一个使用PyTorch框架和AlexNet模型进行128x128图像4分类的程序。这个程序假设图像按训练集、测试集和类别存放在不同的文件夹中。程序会输出每个epoch的损失函数值、测试集正确率、验证集正确率,并输出混淆矩阵。
首先,确保你已经安装了必要的库:
```bash
pip install torch torchvision matplotlib scikit-learn
```
然后,编写以下代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import os
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, accuracy_score
import numpy as np
# 数据预处理
transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 数据集路径
train_dir = 'path_to_train_directory'
test_dir = 'path_to_test_directory'
val_dir = 'path_to_val_directory'
# 加载数据集
train_dataset = datasets.ImageFolder(root=train_dir, transform=transform)
test_dataset = datasets.ImageFolder(root=test_dir, transform=transform)
val_dataset = datasets.ImageFolder(root=val_dir, transform=transform)
# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# 类别数
num_classes = len(train_dataset.classes)
# 加载预训练的AlexNet模型,并修改最后的全连接层
model = models.alexnet(pretrained=True)
model.classifier[6] = nn.Linear(model.classifier[6].in_features, num_classes)
# 设备配置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练和验证函数
def train(model, loader, criterion, optimizer):
model.train()
running_loss = 0.0
for inputs, labels in loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(loader.dataset)
return epoch_loss
def validate(model, loader, criterion):
model.eval()
running_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
epoch_loss = running_loss / len(loader.dataset)
accuracy = correct / total
return epoch_loss, accuracy
# 训练模型
num_epochs = 25
train_losses = []
val_losses = []
val_accuracies = []
for epoch in range(num_epochs):
train_loss = train(model, train_loader, criterion, optimizer)
val_loss, val_accuracy = validate(model, val_loader, criterion)
train_losses.append(train_loss)
val_losses.append(val_loss)
val_accuracies.append(val_accuracy)
print(f'Epoch {epoch+1}/{num_epochs}')
print(f'Train Loss: {train_loss:.4f}')
print(f'Validation Loss: {val_loss:.4f}')
print(f'Validation Accuracy: {val_accuracy:.4f}')
# 测试模型
def test(model, loader):
model.eval()
correct = 0
total = 0
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
accuracy = correct / total
return accuracy, all_preds, all_labels
test_accuracy, preds, labels = test(model, test_loader)
print(f'Test Accuracy: {test_accuracy:.4f}')
# 混淆矩阵
cm = confusion_matrix(labels, preds)
print('Confusion Matrix:')
print(cm)
# 可视化损失函数和准确率
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_losses, label='Train Loss')
plt.plot(val_losses, label='Validation Loss')
plt.legend()
plt.title('Loss')
plt.subplot(1, 2, 2)
plt.plot(val_accuracies, label='Validation Accuracy')
plt.legend()
plt.title('Accuracy')
plt.show()
```
怎么使用autodl公开数据集
### 如何使用 AutoDL 公开数据集
#### 租赁显卡并打开终端
当使用AutoDL平台时,由于其基于Linux的操作环境[^1],用户需先租赁所需配置的GPU资源,并通过SSH连接到分配的实例来启动命令行界面。
```bash
ssh user@your_instance_ip_address
```
#### 获取公开数据集
许多公开的数据集可以通过特定链接直接下载至AutoDL环境中。对于一些常用的数据集,如CIFAR-10, MNIST等,可以利用Python库`torchvision.datasets`轻松获取:
```python
from torchvision import datasets, transforms
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
```
如果目标数据集不在上述内置选项内,则可能需要手动访问官方网址或其他可信来源找到对应的下载页面。通常情况下,这些网站会提供详细的API文档说明如何编程方式接入以及批量拉取文件。
#### 数据处理与准备
一旦成功加载了原始数据之后,下一步就是对其进行必要的清理、分割及增强工作以便后续用于训练机器学习模型。这一步骤具体取决于所选任务类型和个人偏好设置,在此仅给出通用框架作为参考:
```python
import os
from sklearn.model_selection import train_test_split
def prepare_data(data_dir='.', test_size=.2):
images_paths = []
labels = []
# 假设图片按照类别存放在不同子目录下...
for label_name in sorted(os.listdir(data_dir)):
path = os.path.join(data_dir, label_name)
if not os.path.isdir(path): continue
for img_file in os.listdir(path):
full_path = os.path.join(path, img_file)
images_paths.append(full_path)
labels.append(label_name)
X_trainval, X_test, y_trainval, y_test = \
train_test_split(images_paths, labels,
stratify=labels,
random_state=42,
shuffle=True,
test_size=test_size)
return (X_trainval, y_trainval), (X_test, y_test)
(X_trainval, y_trainval), (X_test, y_test) = prepare_data('./my_custom_dataset')
print(f'Training samples count={len(y_trainval)}, Testing samples count={len(y_test)}')
```
阅读全文
相关推荐

















