写一个用pytorch,VGG16处理jaffe数据集的代码,用cpu,划分训练集,验证集和测试集,给出准确率图,损失图和混淆矩阵
时间: 2024-05-04 16:16:37 浏览: 193
好的,我可以为您提供一些关于处理Jaffe数据集的代码。您可以使用以下代码块:
```python
import torch
import torch.nn as nn
import torchvision.models as models
import pandas as pd
from torchvision import transforms, datasets
from torch.utils.data import DataLoader, Dataset
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
# 设置随机数种子,确保每次运行结果一致
torch.manual_seed(0)
# 设置文件路径
file_path = '/path/to/your/jaffe/dataset'
# 创建数据转换器
transformer = transforms.Compose([
transforms.Resize(224), # 改变图像大小到 224 x 224
transforms.Grayscale(num_output_channels=3), # 转换为灰度图像
transforms.ToTensor(), # 转换为张量
transforms.Normalize((0.5,), (0.5,)) # 标准化图像数据
])
# 加载数据集
dataset = datasets.ImageFolder(root=file_path, transform=transformer)
# 划分数据集为训练集,验证集和测试集
train_size = int(0.7 * len(dataset))
val_size = int(0.15 * len(dataset))
test_size = len(dataset) - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, val_size, test_size])
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
# 创建VGG16模型
model = models.vgg16(pretrained=True)
# 冻结所有层
for param in model.parameters():
param.requires_grad = False
# 替换最后一层
model.classifier[6] = nn.Linear(4096, dataset.num_classes)
# 设置损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.classifier[6].parameters(), lr=0.001, momentum=0.9)
# 训练模型
train_losses, val_losses, val_accuracies = [], [], []
n_epochs = 10
for epoch in range(1, n_epochs+1):
# 训练模式
model.train()
train_loss = 0.0
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()*data.size(0)
train_loss = train_loss/len(train_loader.dataset)
train_losses.append(train_loss)
# 验证模式
model.eval()
val_loss = 0.0
val_accuracy = 0.0
for data, target in val_loader:
output = model(data)
loss = criterion(output, target)
val_loss += loss.item()*data.size(0)
_, pred = torch.max(output, dim=1)
correct_tensor = pred.eq(target.data.view_as(pred))
accuracy = torch.mean(correct_tensor.type(torch.FloatTensor))
val_accuracy += accuracy.item()*data.size(0)
val_loss = val_loss/len(val_loader.dataset)
val_losses.append(val_loss)
val_accuracy = val_accuracy/len(val_loader.dataset)
val_accuracies.append(val_accuracy)
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f} \tValidation Accuracy: {:.6f}'.format(
epoch, train_loss, val_loss, val_accuracy))
# 绘制损失和准确率图
plt.plot(train_losses, label='Training loss')
plt.plot(val_losses, label='Validation loss')
plt.plot(val_accuracies, label='Validation accuracy')
plt.legend(frameon=False)
# 测试模型
model.eval()
test_accuracy = 0.0
confusion_mat = torch.zeros(dataset.num_classes, dataset.num_classes)
with torch.no_grad():
for data, target in test_loader:
output = model(data)
_, pred = torch.max(output, dim=1)
confusion_mat += confusion_matrix(target, pred, labels=[0, 1, 2, 3, 4, 5])
correct_tensor = pred.eq(target.data.view_as(pred))
accuracy = torch.mean(correct_tensor.type(torch.FloatTensor))
test_accuracy += accuracy.item()*data.size(0)
test_accuracy = test_accuracy/len(test_loader.dataset)
print('Test Accuracy: {:.6f}'.format(test_accuracy))
print('Confusion Matrix:\n', confusion_mat)
```
请记得将代码中的文件路径替换为您自己Jaffe数据集的路径。这段代码将训练一个使用VGG16模型的分类器,用于识别Jaffe数据集中的表情。代码会将数据集划分为训练集,验证集和测试集,并绘制损失和准确率图。同时,Training Loss: {:.6f} Validation Loss: {:.6f} Validation Accuracy: {:.6f} 将打印到控制台。最后,代码将输出测试集的准确率和混淆矩阵。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)