我想让MTCNN代码运行后输出准确率折线图该怎样修改代码for epoch in range(epoch_num): for batch_id, (img, label, bbox, landmark) in enumerate(train_loader): img = img.to(device) label = label.to(device).long() bbox = bbox.to(device) landmark = landmark.to(device) class_out, bbox_out, landmark_out = model(img) cls_loss = class_loss(class_out, label) box_loss = bbox_loss(bbox_out, bbox, label) landmarks_loss = landmark_loss(landmark_out, landmark, label) total_loss = radio_cls_loss * cls_loss + radio_bbox_loss * box_loss + radio_landmark_loss * landmarks_loss optimizer.zero_grad() total_loss.backward() optimizer.step() if batch_id % 100 == 0: acc = accuracy(class_out, label) print('[%s] Train epoch %d, batch %d, total_loss: %f, cls_loss: %f, box_loss: %f, landmarks_loss: %f, ' 'accuracy:%f' % (datetime.now(), epoch, batch_id, total_loss, cls_loss, box_loss, landmarks_loss, acc)) scheduler.step()
时间: 2023-12-22 19:06:19 浏览: 119
要在 MTCNN 代码运行后输出准确率折线图,可以使用 Matplotlib 库绘制折线图,并在训练过程中保存每个 epoch 的准确率和损失值,最后将其绘制成折线图。
具体来说,可以按照以下步骤进行修改:
1. 在代码开头引入 Matplotlib 库,并定义一个空列表来保存每个 epoch 的准确率和损失值,例如:
```
import matplotlib.pyplot as plt
epoch_acc = []
epoch_loss = []
```
2. 在训练过程中,在每个 epoch 结束后计算当前 epoch 的准确率和损失值,并将其添加到列表中,例如:
```
if batch_id % 100 == 0:
acc = accuracy(class_out, label)
epoch_acc.append(acc)
epoch_loss.append(total_loss)
print('[%s] Train epoch %d, batch %d, total_loss: %f, cls_loss: %f, box_loss: %f, landmarks_loss: %f, '
'accuracy:%f' % (datetime.now(), epoch, batch_id, total_loss, cls_loss, box_loss, landmarks_loss, acc))
```
3. 在训练结束后,使用 Matplotlib 库绘制准确率和损失值的折线图,例如:
```
plt.plot(range(1, epoch_num + 1), epoch_acc, label='Accuracy')
plt.plot(range(1, epoch_num + 1), epoch_loss, label='Loss')
plt.xlabel('Epoch')
plt.legend()
plt.show()
```
这样,就可以在训练过程中保存准确率和损失值,并最终将其绘制成折线图。需要注意的是,Matplotlib 库需要单独安装,并且在绘图前需要先将数据转化为 NumPy 数组。
阅读全文