建立一个传统文本二分类的卷积神经网络模型,首先对数据集进行读取,数据集分为lebal列和reveiw列,lebal列为标签,为0和1,作为分类标签,reveiw列为中文文本数据列,模型首先对数据集进行读取,随机抽取各分类的80%作为训练集,剩余为测试集,对于文本转换为数字数据则采取文本最大长度作为数据长度,其余不足长度的数据按0填充,卷积核尺寸为3,采用平均池化,一个全连接层进行二分类输出结果,模型共训练20轮,输出每轮训练的测试集和训练集的损失率和准确率结果并绘制折线图。基于pytorch对模型进行构建,给出相应代码

时间: 2023-11-12 21:04:57 浏览: 26
好的,以下是基于PyTorch构建传统文本二分类卷积神经网络模型的代码: ```python import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data import numpy as np import pandas as pd import matplotlib.pyplot as plt import jieba # 定义模型超参数 MAX_LEN = 128 # 文本最大长度 BATCH_SIZE = 64 # 批处理大小 KERNEL_SIZE = 3 # 卷积核尺寸 NUM_FILTERS = 100 # 卷积核数量 HIDDEN_SIZE = 64 # 全连接层隐藏层大小 NUM_CLASSES = 2 # 类别数 NUM_EPOCHS = 20 # 训练轮数 LEARNING_RATE = 0.001 # 学习率 EMBEDDING_SIZE = 128 # 词向量维度 # 定义数据预处理函数 def preprocess_text(text): text = jieba.lcut(text) # 分词 text = [word for word in text if len(word) > 1] # 去掉长度为1的词 text = " ".join(text) # 合并为字符串 return text # 定义数据读取类 class CustomDataset(data.Dataset): def __init__(self, data_path): self.df = pd.read_csv(data_path, sep="\t", header=None, names=["label", "review"], error_bad_lines=False) self.df["review"] = self.df["review"].apply(preprocess_text) self.tokenizer = None def __len__(self): return len(self.df) def __getitem__(self, index): label = self.df.iloc[index]["label"] review = self.df.iloc[index]["review"] if self.tokenizer is None: self.tokenizer = torchtext.vocab.FastText(language='zh').get_vecs_by_tokens(list(review)) review = [self.tokenizer.stoi.get(word, 0) for word in review.split()] # 转换为数字序列 review = review[:MAX_LEN] + [0] * (MAX_LEN - len(review)) # 填充到最大长度 return torch.LongTensor(review), torch.LongTensor([label]) # 定义卷积神经网络模型 class TextCNN(nn.Module): def __init__(self): super(TextCNN, self).__init__() self.embedding = nn.Embedding(len(CustomDataset(data_path)), EMBEDDING_SIZE) self.conv = nn.Conv1d(in_channels=EMBEDDING_SIZE, out_channels=NUM_FILTERS, kernel_size=KERNEL_SIZE) self.pool = nn.AdaptiveAvgPool1d(1) self.fc = nn.Linear(NUM_FILTERS, HIDDEN_SIZE) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.5) self.out = nn.Linear(HIDDEN_SIZE, NUM_CLASSES) def forward(self, x): x = self.embedding(x) x = x.permute(0, 2, 1) # 将维度转换为[batch_size, embedding_size, seq_len] x = self.conv(x) x = self.pool(x).squeeze() x = self.fc(x) x = self.relu(x) x = self.dropout(x) x = self.out(x) return x # 定义训练函数 def train(model, device, train_loader, optimizer, criterion): model.train() train_loss = 0 train_acc = 0 for x, y in train_loader: x, y = x.to(device), y.to(device) optimizer.zero_grad() pred = model(x) loss = criterion(pred, y.squeeze()) loss.backward() optimizer.step() train_loss += loss.item() train_acc += (pred.argmax(dim=1) == y.squeeze()).sum().item() return train_loss / len(train_loader), train_acc / len(train_loader.dataset) # 定义测试函数 def test(model, device, test_loader, criterion): model.eval() test_loss = 0 test_acc = 0 with torch.no_grad(): for x, y in test_loader: x, y = x.to(device), y.to(device) pred = model(x) loss = criterion(pred, y.squeeze()) test_loss += loss.item() test_acc += (pred.argmax(dim=1) == y.squeeze()).sum().item() return test_loss / len(test_loader), test_acc / len(test_loader.dataset) # 定义主函数 if __name__ == "__main__": # 加载数据集 data_path = "data.csv" dataset = CustomDataset(data_path) # 划分数据集 train_size = int(len(dataset) * 0.8) test_size = len(dataset) - train_size train_dataset, test_dataset = data.random_split(dataset, [train_size, test_size]) # 创建数据加载器 train_loader = data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_loader = data.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True) # 定义设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 创建模型 model = TextCNN().to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) # 训练模型 train_loss_list, train_acc_list, test_loss_list, test_acc_list = [], [], [], [] for epoch in range(NUM_EPOCHS): train_loss, train_acc = train(model, device, train_loader, optimizer, criterion) test_loss, test_acc = test(model, device, test_loader, criterion) train_loss_list.append(train_loss) train_acc_list.append(train_acc) test_loss_list.append(test_loss) test_acc_list.append(test_acc) print(f"Epoch {epoch + 1}: Train Loss={train_loss:.4f}, Train Acc={train_acc:.4f}, Test Loss={test_loss:.4f}, Test Acc={test_acc:.4f}") # 绘制训练过程中的损失率和准确率折线图 x = range(1, NUM_EPOCHS+1) plt.plot(x, train_loss_list, label="Train Loss") plt.plot(x, train_acc_list, label="Train Acc") plt.plot(x, test_loss_list, label="Test Loss") plt.plot(x, test_acc_list, label="Test Acc") plt.xlabel("Epochs") plt.ylabel("Loss/Accuracy") plt.legend() plt.show() ``` 以上代码中,我们首先定义了模型的超参数,包括文本最大长度、批处理大小、卷积核尺寸等;然后定义了数据预处理函数,用于将中文文本转换为数字序列;接着定义了数据读取类`CustomDataset`,用于读取数据集、进行预处理和转换为数字序列;然后定义了卷积神经网络模型`TextCNN`,包括嵌入层、卷积层、池化层、全连接层等;然后定义了训练函数和测试函数,用于训练和测试模型;最后定义了主函数,用于加载数据集、创建数据加载器、构建模型、定义损失函数和优化器、训练模型、绘制折线图等步骤。

相关推荐

zip

最新推荐

gensim-4.0.1-cp37-cp37m-win_amd64.whl.zip

gensim-4.0.1-cp37-cp37m-win_amd64.whl.zip

全球带电粒子探测器市场总体规模,前8强厂商排名及市场份额分析报告.docx

适合人群:投资者,创业者,企业领导者

交联脚本,史上最完整附带一个案例

史上最完整交联脚本,附带一个案例,可私聊我获取; 核心交联脚本_grownlme_Perl_materialsstudio_crosslink_核心交联脚本_源码.zip

基于C++与C#实现AI模型在OpenVINO、TensorRT、ONNX runtime以及OpenCV dnn四个平台的部署

实现AI模型在不同平台的部署。基于C++与C#两种编程语言,分别实现了在OpenVINO、TensorRT、ONNX runtime以及OpenCV dnn四个平台的部署,并提供了C#Winform桌面程序演示

selenium-2.30.0.tar.gz

py依赖包

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

具体操作:你可以将 PyTorch 安装路径添加到环境变量中,或者使用 PyCharm 等集成开发环境来设置 Python 解释器。

好的,以下是具体的操作步骤: 添加 PyTorch 安装路径到环境变量中: 1. 打开计算机的属性,点击高级系统设置; 2. 在弹出的窗口中,点击环境变量; 3. 在系统变量中,找到 PATH 变量,点击编辑; 4. 在编辑系统变量窗口中,点击新建; 5. 输入 PyTorch 安装路径,例如 `C:\Program Files\PyTorch`,点击确定; 6. 点击确定,保存设置。 设置 PyCharm 的 Python 解释器: 1. 打开 PyCharm,点击 File -> Settings 进入设置界面; 2. 在设置界面中,选择 Project -> Project I

TS16949发展史及五大手册的意义.pptx

TS16949发展史及五大手册的意义.pptx