建立一个传统文本二分类的卷积神经网络模型,首先对数据集进行读取,数据集分为lebal列和reveiw列,lebal列为标签,为0和1,作为分类标签,reveiw列为中文文本数据列,模型首先对数据集进行读取,随机抽取各分类的80%作为训练集,剩余为测试集,对于文本转换为数字数据则采取文本最大长度作为数据长度,其余不足长度的数据按0填充,卷积核尺寸为3,采用平均池化,一个全连接层进行二分类输出结果,模型共训练20轮,输出每轮训练的测试集和训练集的损失率和准确率结果并绘制折线图。基于pytorch对模型进行构建,给出相应代码

时间: 2023-11-12 20:04:57 浏览: 43
好的,以下是基于PyTorch构建传统文本二分类卷积神经网络模型的代码: ```python import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data import numpy as np import pandas as pd import matplotlib.pyplot as plt import jieba # 定义模型超参数 MAX_LEN = 128 # 文本最大长度 BATCH_SIZE = 64 # 批处理大小 KERNEL_SIZE = 3 # 卷积核尺寸 NUM_FILTERS = 100 # 卷积核数量 HIDDEN_SIZE = 64 # 全连接层隐藏层大小 NUM_CLASSES = 2 # 类别数 NUM_EPOCHS = 20 # 训练轮数 LEARNING_RATE = 0.001 # 学习率 EMBEDDING_SIZE = 128 # 词向量维度 # 定义数据预处理函数 def preprocess_text(text): text = jieba.lcut(text) # 分词 text = [word for word in text if len(word) > 1] # 去掉长度为1的词 text = " ".join(text) # 合并为字符串 return text # 定义数据读取类 class CustomDataset(data.Dataset): def __init__(self, data_path): self.df = pd.read_csv(data_path, sep="\t", header=None, names=["label", "review"], error_bad_lines=False) self.df["review"] = self.df["review"].apply(preprocess_text) self.tokenizer = None def __len__(self): return len(self.df) def __getitem__(self, index): label = self.df.iloc[index]["label"] review = self.df.iloc[index]["review"] if self.tokenizer is None: self.tokenizer = torchtext.vocab.FastText(language='zh').get_vecs_by_tokens(list(review)) review = [self.tokenizer.stoi.get(word, 0) for word in review.split()] # 转换为数字序列 review = review[:MAX_LEN] + [0] * (MAX_LEN - len(review)) # 填充到最大长度 return torch.LongTensor(review), torch.LongTensor([label]) # 定义卷积神经网络模型 class TextCNN(nn.Module): def __init__(self): super(TextCNN, self).__init__() self.embedding = nn.Embedding(len(CustomDataset(data_path)), EMBEDDING_SIZE) self.conv = nn.Conv1d(in_channels=EMBEDDING_SIZE, out_channels=NUM_FILTERS, kernel_size=KERNEL_SIZE) self.pool = nn.AdaptiveAvgPool1d(1) self.fc = nn.Linear(NUM_FILTERS, HIDDEN_SIZE) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.5) self.out = nn.Linear(HIDDEN_SIZE, NUM_CLASSES) def forward(self, x): x = self.embedding(x) x = x.permute(0, 2, 1) # 将维度转换为[batch_size, embedding_size, seq_len] x = self.conv(x) x = self.pool(x).squeeze() x = self.fc(x) x = self.relu(x) x = self.dropout(x) x = self.out(x) return x # 定义训练函数 def train(model, device, train_loader, optimizer, criterion): model.train() train_loss = 0 train_acc = 0 for x, y in train_loader: x, y = x.to(device), y.to(device) optimizer.zero_grad() pred = model(x) loss = criterion(pred, y.squeeze()) loss.backward() optimizer.step() train_loss += loss.item() train_acc += (pred.argmax(dim=1) == y.squeeze()).sum().item() return train_loss / len(train_loader), train_acc / len(train_loader.dataset) # 定义测试函数 def test(model, device, test_loader, criterion): model.eval() test_loss = 0 test_acc = 0 with torch.no_grad(): for x, y in test_loader: x, y = x.to(device), y.to(device) pred = model(x) loss = criterion(pred, y.squeeze()) test_loss += loss.item() test_acc += (pred.argmax(dim=1) == y.squeeze()).sum().item() return test_loss / len(test_loader), test_acc / len(test_loader.dataset) # 定义主函数 if __name__ == "__main__": # 加载数据集 data_path = "data.csv" dataset = CustomDataset(data_path) # 划分数据集 train_size = int(len(dataset) * 0.8) test_size = len(dataset) - train_size train_dataset, test_dataset = data.random_split(dataset, [train_size, test_size]) # 创建数据加载器 train_loader = data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_loader = data.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True) # 定义设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 创建模型 model = TextCNN().to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) # 训练模型 train_loss_list, train_acc_list, test_loss_list, test_acc_list = [], [], [], [] for epoch in range(NUM_EPOCHS): train_loss, train_acc = train(model, device, train_loader, optimizer, criterion) test_loss, test_acc = test(model, device, test_loader, criterion) train_loss_list.append(train_loss) train_acc_list.append(train_acc) test_loss_list.append(test_loss) test_acc_list.append(test_acc) print(f"Epoch {epoch + 1}: Train Loss={train_loss:.4f}, Train Acc={train_acc:.4f}, Test Loss={test_loss:.4f}, Test Acc={test_acc:.4f}") # 绘制训练过程中的损失率和准确率折线图 x = range(1, NUM_EPOCHS+1) plt.plot(x, train_loss_list, label="Train Loss") plt.plot(x, train_acc_list, label="Train Acc") plt.plot(x, test_loss_list, label="Test Loss") plt.plot(x, test_acc_list, label="Test Acc") plt.xlabel("Epochs") plt.ylabel("Loss/Accuracy") plt.legend() plt.show() ``` 以上代码中,我们首先定义了模型的超参数,包括文本最大长度、批处理大小、卷积核尺寸等;然后定义了数据预处理函数,用于将中文文本转换为数字序列;接着定义了数据读取类`CustomDataset`,用于读取数据集、进行预处理和转换为数字序列;然后定义了卷积神经网络模型`TextCNN`,包括嵌入层、卷积层、池化层、全连接层等;然后定义了训练函数和测试函数,用于训练和测试模型;最后定义了主函数,用于加载数据集、创建数据加载器、构建模型、定义损失函数和优化器、训练模型、绘制折线图等步骤。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。