LAN9253_CMD_RST

时间: 2023-08-21 09:06:18 浏览: 68
### 回答1: `LAN9253_CMD_RST` 是一个用于复位lan9253控制器的SPI命令,其命令码为 `0x00`。 在进行复位操作时,需要向lan9253控制器发送一个长度为4字节的命令,其中第一个字节为 `LAN9253_CMD_RST` 命令码,用于表示复位命令。其他三个字节可以设置为任意值,但最好都设置为0。 以下是一个示例的 `LAN9253_CMD_RST` 命令的常量定义: ```c #define LAN9253_CMD_RST 0x00 ``` 在使用这个命令时,可以根据实际情况进行修改。同时,还需要注意在发送命令前先配置好SPI接口参数,以确保能够正确地与lan9253通信。 ### 回答2: LAN9253_CMD_RST指的是对LAN9253网络控制器进行复位操作。复位是一种软件或者硬件手段,通过将设备返回到初始状态来恢复其正常工作。在LAN9253网络控制器中,复位操作可以用来解决设备出现问题或异常时的情况,具体操作如下。 首先,将控制器的复位引脚置为低电平,表示开始进行复位操作。通过低电平信号,可以清除控制器的配置和状态信息,将其恢复到默认状态。 接下来,需要等待一段时间,等待控制器完成复位过程。复位的时间是不确定的,取决于控制器的复位速度和复位操作的复杂程度。在等待过程中,需要注意不要进行其他与控制器相关的操作,以免干扰复位进程。 当控制器完成复位后,复位引脚的状态会自动恢复为高电平。此时,可以认为控制器已经成功复位,并且可以重新进行配置和操作。 需要注意的是,LAN9253_CMD_RST只是针对特定的网络控制器LAN9253而言的,其他的网络控制器可能有不同的复位操作方法。在实际操作中,应该根据具体的设备和控制器类型,参考相应的文档和说明来正确地进行复位操作。 ### 回答3: LAN9253_CMD_RST是指对LAN9253芯片进行复位操作的命令。 LAN9253是一款高度集成的以太网控制器芯片,常用于工业控制设备、网络通信设备等领域。当LAN9253需要进行复位时,可以通过发送LAN9253_CMD_RST命令来完成该操作。 复位操作是指将芯片的内部状态恢复到初始状态,以解决一些异常情况或恢复正常工作。对于LAN9253芯片来说,复位操作通常涉及到将状态寄存器、配置寄存器等重要寄存器恢复到默认值,并重新初始化芯片的各种功能和模块。 在发送LAN9253_CMD_RST命令后,芯片会根据命令的要求进行复位操作。复位完成后,芯片会重新初始化网络配置、内部模块等,并恢复到正常的工作状态。这样可以确保芯片在各种异常情况下能够正常恢复,并开始正常的数据传输和通信。 总之,通过发送LAN9253_CMD_RST命令可以对LAN9253芯片进行复位操作,以确保其能够在异常情况下恢复正常工作状态。

相关推荐

wire [ROWBUF_IDX_W-1:0] sbuf_cnt_r; wire [ROWBUF_IDX_W-1:0] sbuf_cnt_nxt; wire sbuf_cnt_clr; wire sbuf_cnt_incr; wire sbuf_cnt_ena; wire sbuf_cnt_last; wire sbuf_icb_cmd_hsked; wire sbuf_icb_rsp_hsked; wire nice_rsp_valid_sbuf; wire nice_icb_cmd_valid_sbuf; wire nice_icb_cmd_hsked; assign sbuf_icb_cmd_hsked = (state_is_sbuf | (state_is_idle & custom3_sbuf)) & nice_icb_cmd_hsked; assign sbuf_icb_rsp_hsked = state_is_sbuf & nice_icb_rsp_hsked; assign sbuf_icb_rsp_hsked_last = sbuf_icb_rsp_hsked & sbuf_cnt_last; assign sbuf_cnt_last = (sbuf_cnt_r == clonum); //assign sbuf_cnt_clr = custom3_sbuf & nice_req_hsked; assign sbuf_cnt_clr = sbuf_icb_rsp_hsked_last; assign sbuf_cnt_incr = sbuf_icb_rsp_hsked & ~sbuf_cnt_last; assign sbuf_cnt_ena = sbuf_cnt_clr | sbuf_cnt_incr; assign sbuf_cnt_nxt = ({ROWBUF_IDX_W{sbuf_cnt_clr }} & {ROWBUF_IDX_W{1'b0}}) | ({ROWBUF_IDX_W{sbuf_cnt_incr}} & (sbuf_cnt_r + 1'b1) ) ; sirv_gnrl_dfflr #(ROWBUF_IDX_W) sbuf_cnt_dfflr (sbuf_cnt_ena, sbuf_cnt_nxt, sbuf_cnt_r, nice_clk, nice_rst_n); // nice_rsp_valid wait for nice_icb_rsp_valid in SBUF assign nice_rsp_valid_sbuf = state_is_sbuf & sbuf_cnt_last & nice_icb_rsp_valid; wire [ROWBUF_IDX_W-1:0] sbuf_cmd_cnt_r; wire [ROWBUF_IDX_W-1:0] sbuf_cmd_cnt_nxt; wire sbuf_cmd_cnt_clr; wire sbuf_cmd_cnt_incr; wire sbuf_cmd_cnt_ena; wire sbuf_cmd_cnt_last; assign sbuf_cmd_cnt_last = (sbuf_cmd_cnt_r == clonum); assign sbuf_cmd_cnt_clr = sbuf_icb_rsp_hsked_last; assign sbuf_cmd_cnt_incr = sbuf_icb_cmd_hsked & ~sbuf_cmd_cnt_last; assign sbuf_cmd_cnt_ena = sbuf_cmd_cnt_clr | sbuf_cmd_cnt_incr; assign sbuf_cmd_cnt_nxt = ({ROWBUF_IDX_W{sbuf_cmd_cnt_clr }} & {ROWBUF_IDX_W{1'b0}}) | ({ROWBUF_IDX_W{sbuf_cmd_cnt_incr}} & (sbuf_cmd_cnt_r + 1'b1) ) ; sirv_gnrl_dfflr #(ROWBUF_IDX_W) sbuf_cmd_cnt_dfflr (sbuf_cmd_cnt_ena, sbuf_cmd_cnt_nxt, sbuf_cmd_cnt_r, nice_clk, nice_rst_n); // nice_icb_cmd_valid sets when sbuf_cmd_cnt_r is not full in SBUF assign nice_icb_cmd_valid_sbuf = (state_is_sbuf & (sbuf_cmd_cnt_r <= clonum) & (sbuf_cnt_r != clonum));,详细解释一下这段代码

最新推荐

recommend-type

基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip

基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip
recommend-type

基于python实现树莓派和传感器的植物生长环境评估信息系统

【作品名称】:基于python实现树莓派和传感器的植物生长环境评估信息系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于python实现树莓派和传感器的植物生长环境评估信息系统
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):