基于语义图的语义解析代码示例
时间: 2024-05-07 19:23:25 浏览: 148
语义分析代码
4星 · 用户满意度95%
以下是一个基于语义图的语义解析代码示例,用于将用户输入的句子转换成可执行的指令:
```python
from graph_tool.all import *
# 定义语义图
g = Graph()
nouns = g.add_vertex()
verbs = g.add_vertex()
objects = g.add_vertex()
g.add_edge(nouns, verbs)
g.add_edge(verbs, objects)
# 添加节点标签
g.vertex_properties["label"] = g.new_vertex_property("string")
g.vertex_properties["label"][nouns] = "nouns"
g.vertex_properties["label"][verbs] = "verbs"
g.vertex_properties["label"][objects] = "objects"
# 添加边标签
g.edge_properties["label"] = g.new_edge_property("string")
g.edge_properties["label"][g.edge(nouns, verbs)] = "action"
g.edge_properties["label"][g.edge(verbs, objects)] = "object"
# 解析句子
def parse_sentence(sentence):
# 将句子分词并识别词性
words = sentence.split()
tags = nltk.pos_tag(words)
# 将词性标签转换成语义图节点标签
node_labels = []
for word, tag in tags:
if tag.startswith("N"):
node_labels.append("nouns")
elif tag.startswith("V"):
node_labels.append("verbs")
else:
node_labels.append("objects")
# 在语义图中查找符合输入句子的路径
for path in all_paths(g, source=nouns, target=objects):
if len(path) == len(node_labels) and all(g.vertex_properties["label"][v] == label for v, label in zip(path, node_labels)):
# 将路径转换成可执行的指令
action = words[path.index(verbs)]
obj = words[path.index(objects)]
return {"action": action, "object": obj}
# 无法解析句子
return None
```
该示例代码使用了 Python 的 graph-tool 库来实现语义图,并使用 NLTK 库来进行分词和词性识别。在解析句子时,它首先将句子分词并识别词性,然后将词性标签转换成语义图节点标签。接着,在语义图中查找符合输入句子的路径,并将路径转换成可执行的指令。如果无法解析句子,则返回 None。
阅读全文